SEARCH

SEARCH BY CITATION

References

  • Amin EA, Welsh WJ (2006). A preliminary in silico lead series of 2-phthalimidinoglutaric acid analogues designed as MMP-3 inhibitors. J Chem Inf Model 46: 21042109.
  • Aronov AM, Balakin KV, Kiselyov A, Varma-O'Brien S, Ekins S (2006). Applications of QSAR methods to ion channels. In: Ekins S (ed) Computational Toxicology: Risk Assessment for Pharmaceutical and Environmental Chemicals. John Wiley and Sons: Hoboken, NJ, pp in press.
  • Balakin KV, Ekins S, Bugrim A, Ivanenkov YA, Korolev D, Nikolsky Y et al. (2004). Quantitative structure–metabolism relationship modeling of the metabolic N-dealkylation rates. Drug Metab Dispos 32: 11111120.
  • Balakin KV, Ivanenkov YA, Savchuk NP, Ivaschenko AA, Ekins S (2005). Comprehensive computational assessment of ADME properties using mapping techniques. Curr Drug Disc Tech 2: 99113.
  • Baldwin ET, Bhat TN, Gulnick SV, Hosur MV, Sowder Il RC, Cachau RE et al. (1993). Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc Natl Acad Sci USA 90: 67966800.
  • Barreca ML, Gitto R, Quartarone S, De Luca L, De Sarro G, Chimirri A (2003). Pharmacophore modeling as an efficient tool in the discovery of novel noncompetitive AMPA receptor antagonists. J Chem Inf Comput Sci 43: 651655.
  • Becker OM, Dhanoa DS, Marantz Y, Chen D, Shacham S, Cheruku S et al. (2006). An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49: 31163135.
  • Bi X, Haque TS, Zhou J, Skillman AG, Lin B, Lee CE et al. (2000). Novel cathepsin D inhibitors block the formation of hyperphosphorylated Tau fragments in hippocampus. J Neurochem 74: 14691477.
  • Bonacci TM, Mathews JL, Yuan C, Lehmann DM, Malik S, Wu D et al. (2006). Differential targeting of Gbetagamma-subunit signaling with small molecules. Science 312: 443446.
  • Brea J, Rodrigo J, Carrieri A, Sanz F, Cadavid MI, Enguix MJ et al. (2002). New serotonin 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptor antagonists: synthesis, pharmacology, 3D-QSAR, and molecular modeling of (aminoalkyl)benzo and heterocycloalkanones. J Med Chem 45: 5471.
  • Bursavich MG, Rich DH (2002). Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J Med Chem 45: 541558.
  • Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgenson WL, Lins RD et al. (2000). Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43: 21002114.
  • Chang C, Bahadduri PM, Polli JE, Swaan PW, Ekins S (2006a). Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos 34: 19761984.
  • Chang C, Ekins S, Bahadduri P, Swaan PW (2006b). Pharmacophore-based discovery of ligands for drug transporters. Adv Drug Del Rev 58: 14311450.
  • Chang C, Swaan PW (2005). Computational approaches to modeling drug transporters. Eur J Pharm Sci 27: 411424.
  • Charlier C, Henichart JP, Durant F, Wouters J (2006). Structural insights into human 5-lipoxygenase inhibition: combined ligand-based and target-based approach. J Med Chem 49: 186195.
  • Chen D, Wang CY, Lambert JD, Ai N, Welsh WJ, Yang CS (2005). Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure–activity relationship and molecular-modeling studies. Biochem Pharmacol 69: 15231531.
  • Dajani R, Cleasby A, Neu M, Wonacott AJ, Jhoti H, Hood AM et al. (1999). X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. J Biol Chem 53: 3786237868.
  • de Graaf C, Vermeulen NP, Feenstra KA (2005). Cytochrome P450 in silico: an integrative modeling approach. J Med Chem 48: 27252755.
  • de Groot MJ (2006). Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 11: 601606.
  • de Groot MJ, Alex AA, Jones BC (2002a). Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J Med Chem 45: 19831993.
  • de Groot MJ, Ekins S (2002b). Pharmacophore modeling of cytochromes P450. Adv Drug Del Rev 54: 367383.
  • Debnath AK (2003). Generation of predictive pharmacophore models for CCR5 antagonists: study with piperidine- and piperazine-based compounds as a new class of HIV-1 entry inhibitors. J Med Chem 46: 45014515.
  • Deng W, Breneman C, Embrechts MJ (2004). Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods. J Chem Inf Comput Sci 44: 699703.
  • Di Santo R, Fermeglia M, Ferrone M, Paneni MS, Costi R, Artico M et al. (2005). Simple but highly effective three-dimensional chemical-feature-based pharmacophore model for diketo acid derivatives as hepatitis C virus RNA-dependent RNA polymerase inhibitors. J Med Chem 48: 63046314.
  • Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J et al. (2005). A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45: 839849.
  • Doddareddy MR, Cho YS, Koh HY, Kim DH, Pae AN (2006). In silico renal clearance model using classical Volsurf approach. J Chem Inf Model 46: 13121320.
  • Doman TN, McGovern SL, Witherbee BJ, Kasten TP, Kurumbail R, Stallings WC et al. (2002). Molecular docking and highthroughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45: 22132221.
  • Ekins S, Balakin KV, Savchuk N, Ivanenkov Y (2006). Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning, Kohonen and Sammon mapping techniques. J Med Chem 49: 50595071.
  • Ekins S, Berbaum J, Harrison RK, Zecher M, Yuan J, Ishchenko AV et al. (2004a). Applying computational and in vitro approaches to lead selection. In: Borchardt RT, Kerns EH, Lipinski CA, Thakker DR, Wang B (eds). Pharmaceutical Profiling in Drug Discovery for Lead Selection. AAPS Press: Arlington, VA, pp 361389.
  • Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH et al. (1999a). Three and four dimensional-quantitative structure activity relationship analyses of CYP3A4 inhibitors. J Pharmacol Exp Ther 290: 429438.
  • Ekins S, Bravi G, Wikel JH, Wrighton SA (1999b). Three dimensional quantitative structure activity relationship (3D-QSAR) analysis of CYP3A4 substrates. J Pharmacol Exp Ther 291: 424433.
  • Ekins S, Mestres J, Testa B (2007). In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol [E-pub ahead of print: 4 June 2007; doi: DOI: 10.1038/sj.bjp.0707305].
  • Ekins S, Nikolsky Y, Nikolskaya T (2005). Techniques: application of systems biology to absorption, distribution, metabolism, excretion, and toxicity. Trends Pharmacol Sci 26: 202209.
  • Ekins S, Obach RS (2000). Three dimensional-quantitative structure activity relationship computational approaches of prediction of human in vitro intrinsic clearance. J Pharmacol Exp Ther 295: 463473.
  • Ekins S, Swaan PW (2004b). Development of computational models for enzymes, transporters, channels and receptors relevant to ADME/TOX. Rev Comp Chem 20: 333415.
  • Ekroos M, Sjogren T (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103: 1368213687.
  • Fischer PM (2004). The design of drug candidate molecules as selective inhibitors of therapeutically relevant protein kinases. Curr Med Chem 11: 15631583.
  • Fisher NDL, Hollenberg NK (2001). Is there a future for renin inhibitors. Expert Opin Invest Drugs 10: 417426.
  • Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA et al. (2000). Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57: 7581.
  • Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005a). Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nat Chem Biol 1: 389397.
  • Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005b). Biological spectra analysis: linking biological activity profiles to molecular structure. Proc Natl Acad Sci USA 102: 261266.
  • Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005c). Biospectra analysis: model proteome characterizations for linking molecular structure and biological response. J Med Chem 48: 69186925.
  • Flohr S, Kurz M, Kostenis E, Brkovich A, Fournier A, Klabunde T (2002). Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure–activity relationships and nuclear magnetic resonance studies on urotensin II. J Med Chem 45: 17991805.
  • Fujita T (1997). Recent success stories leading to commercializable bioactive compounds with the aid of traditional QSAR procedures. Quant Struct Act Relat 16: 107112.
  • Fullbeck M, Huang X, Dumdey R, Frommel C, Dubiel W, Preissner R (2005). Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells. BMC Cancer 5: 97.
  • Furet P, Zimmermann J, Capraro HG, Meyer T, Imbach P (2000). Structure-based design of potent CDK1 inhibitors derived from olomoucine. J Comput Aided Mol Des 14: 403409.
  • Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE et al. (2003). Structure of a human carcinogen-converting enzyme, SULT1A1. J Biol Chem 278: 76557662.
  • Ganguly M, Brown N, Schuffenhauer A, Ertl P, Gillet VJ, Greenidge PA (2006). Introducing the consensus modeling concept in genetic algorithms: application to interpretable discriminant analysis. J Chem Inf Model 46: 21102124.
  • Ghafourian T, Rashidi MR (2001). Quantitative study of the structural requirements of phthalazine/quinazoline derivatives for interaction with human liver aldehyde oxidase. Chem Pharm Bull (Tokyo) 49: 10661071.
  • Glen RC, Martin GR, Hill AP, Hyde RM, Woollard PM, Salmon JA et al. (1995). Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor: discovery of compounds with potential anti-migraine properties. J Med Chem 38: 35663580.
  • Gomeni R, Bani M, D'Angeli C, Corsi M, Bye A (2001). Computer-assisted drug development (CADD): an emerging technology for designing first-time-in-man and proof-of-concept studies from preclinical experiments. Eur J Pharm Sci 13: 261270.
  • Gopalakrishnan B, Aparna V, Jeevan J, Ravi M, Desiraju GR (2005). A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models. J Chem Inf Model 45: 11011108.
  • Griffith R, Luu TT, Garner J, Keller PA (2005). Combining structure-based drug design and pharmacophores. J Mol Graph Model 23: 439446.
  • Guller R, Binggeli A, Breu D, Bur D, Fischli W, Hirth G et al. (1999). Piperidine-renin inhibitors compounds with improved physicochemical properties. Bioorg Med Chem Lett 9: 14031408.
  • Guner O, Clement O, Kurogi Y (2004). Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. Curr Med Chem 11: 29913005.
  • Hancock CN, Macias A, Lee EK, Yu SY, Mackerell Jr AD, Shapiro P (2005). Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J Med Chem 48: 45864595.
  • Hansch C, Lien EJ, Helmer F (1968). Structure–activity correlations in the metabolism of drugs. Arch Biochem Biophys 128: 319330.
  • Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E et al. (2004). Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J Chem Inf Comput Sci 44: 11771185.
  • Hessler G, Zimmermann M, Matter H, Evers A, Naumann T, Lengauer T et al. (2005). Multiple-ligand-based virtual screening: methods and applications of the MTree approach. J Med Chem 48: 65756584.
  • Hibert MF, Gittos MW, Middlemiss DN, Mir AK, Fozard JR (1988). Graphics computer-aided receptor mapping as a predictive tool for drug design: development of potent, selective, and stereospecific ligands for the 5-HT1A receptor. J Med Chem 31: 10871093.
  • Hirashima A, Tomita J, Pan C, Taniguchi E, Eto M (1997). Quantitative structure-activity studies of octopaminergic 2-(arylimino)thiazolidines and oxazolidines against the nervous system of Periplaneta americana L. Bioorg Med Chem 5: 21212128.
  • Hirst WD, Abrahamsen B, Blaney FE, Calver AR, Aloj L, Price GW et al. (2003). Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64: 12951308.
  • Hu M, Li P, Li M, Li W, Yao T, Wu JW et al. (2002). Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111: 10411054.
  • Huang N, Nagarsekar A, Xia G, Hayashi J, MacKerell Jr AD (2004). Identification of non-phosphate-containing small molecular weight inhibitors of the tyrosine kinase p56 Lck SH2 domain via in silico screening against the pY + 3 binding site. J Med Chem 47: 35023511.
  • Huo S, Wang J, Cieplak P, Kollman PA, Kuntz ID (2002). Molecular dynamics and free energy analyses of cathepsin D-inhibitor interactions: insight into structure-based ligand design. J Med Chem 45: 14121419.
  • Ji ZL, Wang Y, Yu L, Han LY, Zheng CJ, Chen YZ (2006). In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction. Toxicol Lett 164: 104112.
  • Kaminski JJ, Rane DF, Snow ME, Weber L, Rothofsky ML, Anderson SD et al. (1997). Identification of novel farnesyl protein transferase inhibitors using three-dimensional searching methods. J Med Chem 40: 41034112.
  • Kang J, Wang L, Chen X-L, Triggle DJ, Rampe D (2001). Interactions of a series of fluoroquinolone antibacterial drugs with the human cardiac K+ channel HERG. Mol Pharmacol 59: 122126.
  • Kansal AR (2004). Modeling approaches to type 2 diabetes. Diabetes Technol Ther 6: 3947.
  • Kauvar LM, Higgins DL, Villar HO, Sportsman JR, Engqvist-Goldstein A, Bukar R et al. (1995). Predicting ligand binding to proteins by affinity fingerprinting. Chem Biol 2: 107118.
  • Kauvar LM, Laborde E (1998a). The diversity challenge in combinatorial chemistry. Curr Opin Drug Disc Dev 1: 6670.
  • Kauvar LM, Villar HO, Sportsman JR, Higgins DL, Schmidt DEJ (1998b). Protein affinity map of chemical space. J Chromatography B 715: 93102.
  • Keenan SM, DeLisle RK, Welsh WJ, Paula S, Ball Jr WJ (2005). Elucidation of the Na+, K+-ATPase digitalis binding site. J Mol Graph Model 23: 465475.
  • Kenyon V, Chorny I, Carvajal WJ, Holman TR, Jacobson MP (2006). Novel human lipoxygenase inhibitors discovered using virtual screening with homology models. J Med Chem 49: 13561363.
  • Khadikar P, Jaiswal M, Gupta M, Mandloi D, Sisodia RS (2005). QSAR studies on 1,2-dithiole-3-thiones: modeling of lipophilicity, quinone reductase specific activity, and production of growth hormone. Bioorg Med Chem Lett 15: 12491255.
  • Kick EK, Roe DC, Skillman AG, Liu G, Ewing TJ, Sun Y et al. (1997). Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem Biol 4: 297307.
  • Klabunde T, Wendt KU, Kadereit D, Brachvogel V, Burger HJ, Herling AW et al. (2005). Acyl ureas as human liver glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. J Med Chem 48: 61786193.
  • Koide Y, Hasegawa T, Takahashi A, Endo A, Mochizuki N, Nakagawa M et al. (2002). Development of novel EDG3 antagonists using a 3D database search and their structure–activity relationships. J Med Chem 45: 46294638.
  • Krovat EM, Langer T (2004). Impact of scoring functions on enrichment in docking-based virtual screening: an application study on renin inhibitors. J Chem Inf Comput Sci 44: 11231129.
  • Kubinyi H (2006). Success stories of computer-aided design. In: Ekins S (ed). Computer Applications in Pharmaceutical Research and Development. John Wiley and Sons: Hoboken, pp 377424.
  • Kunick C, Zeng Z, Gussio R, Zaharevitz D, Leost M, Totzke F et al. (2005). Structure-aided optimization of kinase inhibitors derived from alsterpaullone. Chembiochem 6: 541549.
  • Kurogi Y, Guner OF (2001a). Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8: 10351055.
  • Kurogi Y, Miyata K, Okamura T, Hashimoto K, Tsutsumi K, Nasu M et al. (2001b). Discovery of novel mesangial cell proliferation inhibitors using a three-dimensional database searching method. J Med Chem 44: 23042307.
  • Langer T, Eder M, Hoffmann RD, Chiba P, Ecker GF (2004). Lead identification for modulators of multidrug resistance based on in silico screening with a pharmacophoric feature model. Arch Pharm (Weinheim) 337: 317327.
  • Lepp Z, Kinoshita T, Chuman H (2006). Screening for new antidepressant leads of multiple activities by support vector machines. J Chem Inf Model 46: 158167.
  • Leung D, Abbenante G, Fairlie DP (2000). Protease inhibitors: current status and future prospects. J Med Chem 43: 305341.
  • Lewis DFV (2000). On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics. Biochem Pharmacol 60: 293306.
  • Lill MA, Dobler M, Vedani A (2006). Prediction of small-molecule binding to cytochrome P450 3A4: flexible docking combined with multidimensional QSAR. ChemMedChem 6: 7381.
  • Liu Z, Huang C, Fan K, Wei P, Chen H, Liu S et al. (2005). Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J Chem Inf Model 45: 1017.
  • Lloyd DG, Golfis G, Knox AJS, Fayne D, Meegan MJ, Oprea TI (2006). Oncology exploration: chartering cancer medicinal chemistry space. DDT 11: 149159.
  • Lombardo F, Obach RS, Dicapua FM, Bakken GA, Lu J, Potter DM et al. (2006). A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J Med Chem 49: 22622267.
  • Lombardo F, Obach RS, Shalaeva MY, Gao F (2004). Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem 47: 12421250.
  • Lombardo F, Obach RS, Shalaeva MY, Gao F (2002). Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding. J Med Chem 45: 28672876.
  • Lorenzen S, Dunkel M, Preissner R (2005). In silico screening of drug databases for TSE inhibitors. Biosystems 80: 117122.
  • Lu IL, Huang CF, Peng YH, Lin YT, Hsieh HP, Chen CT et al. (2006). Structure-based drug design of a novel family of PPARgamma partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J Med Chem 49: 27032712.
  • Mager H, Schneeweiss B, Barth A, Mager PP (1982). Judging models in QSAR- and LFE-like studies if there are no replications: correlation of dipeptidyl peptidase IV hydrolytic activities of L-alanyl-L-alanine phenylamides. Pharmazie 37: 856857.
  • Manivet P, Schneider B, Smith JC, Choi DS, Maroteaux L, Kellermann O et al. (2002). The serotonin binding site of human and murine 5-HT2B receptors: molecular modeling and site-directed mutagenesis. J Biol Chem 277: 1717017178.
  • Mao B, Gozalbes R, Barbosa F, Migeon J, Merrick S, Kamm K et al. (2006). QSAR modeling of in vitro inhibition of cytochrome P450 3A4. J Chem Inf Model 46: 21252134.
  • Marki HP, Binggeli A, Bittner B, Bohner-Lang V, Breu V, Bur D et al. (2001). Piperidine renin inhibitors: from leads to drugs. Il Farmaco 56: 2127.
  • McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002). A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45: 17121722.
  • McGovern SL, Shoichet BK (2003). Kinase inhibitors: not just for kinases anymore. J Med Chem 46: 14781483.
  • Morphy R, Kay C, Rankovic Z (2004). From magic bullets to designed multiple ligands. Drug Discov Today 9: 641651.
  • Mullally JE, Fitzpatrick FA (2002). Pharmacophore model for novel inhibitors of ubiquitin isopeptidases that induce p53-independent cell death. Mol Pharmacol 62: 351358.
  • Mullally JE, Moos PJ, Edes K, Fitzpatrick FA (2001). Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway. J Biol Chem 276: 3036630373.
  • Nebigil CG, Choi DS, Dierich A, Hickel P, Le Meur M, Messaddeq N et al. (2000). Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci USA 97: 95089513.
  • Nicklaus MC, Neamati N, Hong H, Mazumder A, Sunder S, Chen J et al. (1997). HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching. J Med Chem 40: 920929.
  • Niimi T, Orita M, Okazawa-Igarashi M, Sakashita H, Kikuchi K, Ball E et al. (2001). Design and synthesis of non-peptidic inhibitors for the Syk C-terminal SH2 domain based on structure-based in-silico screening. J Med Chem 44: 47374740.
  • Niwa T (2004). Prediction of biological targets using probabilistic neural networks and atom-type descriptors. J Med Chem 47: 26452650.
  • Noble D, Colatsky TJ (2000). A return to rational drug discovery: computer-based models of cells, organs and systems in drug target identification. Emerging therapeutic targets 4: 3949.
  • Nowak M, Kolaczkowski M, Pawlowski M, Bojarski AJ (2006). Homology modeling of the serotonin 5-HT1A receptor using automated docking of bioactive compounds with defined geometry. J Med Chem 49: 205214.
  • O'Brien SE, Brown DG, Mills JE, Phillips C, Morris G (2005). Computational tools for the analysis and visualization of multiple protein–ligand complexes. J Mol Graph Model 24: 186194.
  • Oefner C, Binggeli A, Breu D, Bur D, Clozel J-P, D'Arcy A et al. (1999). Renin inhibition by substituted piperidines: a novel paradigm for the inhibition of monomeric aspartic proteinases Chem Biol 6: 127131.
  • Oloff S, Mailman RB, Tropsha A (2005). Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J Med Chem 48: 73227332.
  • Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006). Global mapping of pharmacological space. Nat Biotechnol 24: 805815.
  • Pegg SC-H, Haresco JJ, Kuntz ID (2001). A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15: 911933.
  • Peng T, Pei J, Zhou J (2003). 3D-QSAR and receptor modeling of tyrosine kinase inhibitors with flexible atom receptor model (FLARM). J Chem Inf Comput Sci 43: 298303.
  • Pleban K, Kaiser D, Kopp S, Peer M, Chiba P, Ecker GF (2005). Targeting drug-efflux pumps – a pharmacoinformatic approach. Acta Biochim Pol 52: 737740.
  • Rahuel J, Rasetti V, Maibaum J, Rueger H, Goschke R, Cohen N-C et al. (2000). Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin. Chem Biol 7: 493504.
  • Rollinger JM, Bodensieck A, Seger C, Ellmerer EP, Bauer R, Langer T et al. (2005). Discovering COX-inhibiting constituents of Morus root bark: activity-guided versus computer-aided methods. Planta Med 71: 399405.
  • Rollinger JM, Hornick A, Langer T, Stuppner H, Prast H (2004). Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem 47: 62486254.
  • Roth BL, Lopez E, Beischel S, Westkaemper RB, Evans JM (2004). Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery. Pharmacol Ther 102: 99110.
  • Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ et al. (2000). Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102: 28362841.
  • Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK et al. (2006). Crystal structure of human cytochrome P450 2D6. J Biol Chem 281: 76147622.
  • Schapira M, Raaka BM, Samuels HH, Abagyan R (2000). Rational discovery of novel nuclear hormone receptor antagonists. Proc Natl Acad Sci USA 97: 10081013.
  • Schneider G, Coassolo P, Lave T (1999). Combining in vitro and in vivo pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial neural networks and multivariate statistical techniques. J Med Chem 42: 50725076.
  • Schuster D, Laggner C, Steindl TM, Palusczak A, Hartmann RW, Langer T (2006). Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. J Chem Inf Model 46: 13011311.
  • Seidler J, McGovern SL, Doman TN, Shoichet BK (2003). Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46: 44774486.
  • Setola V, Dukat M, Glennon RA, Roth BL (2005). Molecular determinants for the interaction of the valvulopathic anorexigen norfenfluramine with the 5-HT2B receptor. Mol Pharmacol 68: 2033.
  • Shao D, Berrodin TJ, Manas E, Hauze D, Powers R, Bapat A et al. (2004). Identification of novel estrogen receptor alpha antagonists. J Steroid Biochem Mol Biol 88: 351360.
  • Sharom JR, Bellows DS, Tyers M (2004). From large networks to small molecules. Curr Opin Chem Biol 8: 8190.
  • Sheridan RP, Feuston BP, Maiorov VN, Kearsley SK (2004). Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 44: 19121928.
  • Shi Y (2006). Orphan nuclear receptors, excellent targets of drug discovery. Comb Chem High Throughput Screen 9: 683689.
  • Shimada J (2006). The challenges of making useful protein–ligand free energy predictions for drug discovery. In: Ekins S (ed) Computer Applications in Pharmaceutical Research and Development. John Wiley and Sons: Hoboken, pp 321351.
  • Singh J, van Vlijmen H, Lee WC, Liao Y, Lin KC, Ateeq H et al. (2002a). 3D QSAR (COMFA) of a series of potent and highly selective VLA-4 antagonists. J Comput Aided Mol Des 16: 201211.
  • Singh J, Van Vlijmen H, Liao Y, Lee WC, Cornebise M, Harris M et al. (2002b). Identification of potent and novel alpha4beta1 antagonists using in silico screening. J Med Chem 45: 29882993.
  • Singh P, Kumar R (2001). Quantitative structure–activity relationship study on tetrahydro-beta-carboline antagonists of the serotonin 2B (5HT2B) contractile receptor in the rat stomach fundus. J Enzyme Inhib 16: 491497.
  • Sipila J, Taskinen J (2004). CoMFA modeling of human catechol O-methyltransferase enzyme kinetics. J Chem Inf Comput Sci 44: 97104.
  • Sippl W (2002). Development of biologically active compounds by combining 3D QSAR and structure-based design methods. J Comput Aided Mol Des 16: 825830.
  • Smith PA, Sorich MJ, Low LS, McKinnon RA, Miners JO (2004). Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases. J Mol Graph Model 22: 507517.
  • Sorich MJ, Miners JO, McKinnon RA, Smith PA (2004). Multiple pharmacophores for the investigation of human UDP-glucuronosyltransferase isoform substrate selectivity. Mol Pharmacol 65: 301308.
  • Srinivasen J, Castellino A, Bradley E, Eksterowicz JE, Grootenhuis PDJ, Putta S et al. (2002). Evaluation of a novel shape-based computational filter for lead evolution: application to thrombin inhibitors. J Med Chem 45: 24942500.
  • Stanton A (2003). Potential of renin inhibition in cardiovascular disease. JRAAS 4: 610.
  • Steindl T, Laggner C, Langer T (2005a). Human rhinovirus 3C protease: generation of pharmacophore models for peptidic and nonpeptidic inhibitors and their application in virtual screening. J Chem Inf Model 45: 716724.
  • Steindl T, Langer T (2004). Influenza virus neuraminidase inhibitors: generation and comparison of structure-based and common feature pharmacophore hypotheses and their application in virtual screening. J Chem Inf Comput Sci 44: 18491856.
  • Steindl TM, Crump CE, Hayden FG, Langer T (2005b). Pharmacophore modeling, docking, and principal component analysis based clustering: combined computer-assisted approaches to identify new inhibitors of the human rhinovirus coat protein. J Med Chem 48: 62506260.
  • Strachan RT, Ferrara G, Roth BL (2006). Screening the receptorome: an efficient approach for drug discovery and target validation. Drug Discov Today 11: 708716.
  • Swaan PW, Ekins S (2005). Reengineering the pharmaceutical industry by crash-testing molecules. Drug Disc Today 10: 11911200.
  • Terlau H, Stuhmer W (1998). Structure and function of voltage-gated ion channels. Naturwissenschaften 85: 437444.
  • Tervo AJ, Kyrylenko S, Niskanen P, Salminen A, Leppanen J, Nyronen TH et al. (2004). An in silico approach to discovering novel inhibitors of human sirtuin type 2. J Med Chem 47: 62926298.
  • Tesmer JJG (2006). Hitting the hot spots of cell signaling cascades. Science 312: 377378.
  • Testa B, Krämer SD (2006). The biochemistry of drug metabolism – an introduction. Part 1: principles and overview. Chem Biodevers 3: 10531101.
  • Tetko IV, Bruneau P, Mewes HW, Rohrer DC, Poda GI (2006). Can we estimate the accuracy of ADME-Tox predictions Drug Discov Today 11: 700707.
  • Torres AM, Bansal P, Alewood PF, Bursill JA, Kuchel PW, Vandenberg JI (2003). Solution structure of CnErg1 (ergtoxin), a HERG specific scorpion toxin. FEBS Lett 539: 138142.
  • Tsuchida K, Chaki H, Takakura T, Kotsubo H, Tanaka T, Aikawa Y et al. (2006). Discovery of nonpeptidic small-molecule AP-1 inhibitors: lead hopping based on a three-dimensional pharmacophore model. J Med Chem 49: 8091.
  • Van Drie JH (1993). Protein-structure-based drug discovery of renin inhibitors. BioCad user notes.
  • Verbitski SM, Mullally JE, Fitzpatrick FA, Ireland CM (2004). Punaglandins, chlorinated prostaglandins, function as potent Michael receptors to inhibit ubiquitin isopeptidase activity. J Med Chem 47: 20622070.
  • Vieira E, Binggeli A, Breu D, Bur D, Fischli W, Guller R et al. (1999). Substituted piperidines-highly potent renin inhibitors due to induced fit adaption of the active site. Bioorg Med Chem Lett 9: 13971402.
  • Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H (2004). Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim Biophys Acta 1697: 243257.
  • Waller CL, Evans MV, McKinney JD (1996). Modeling the cytochrome P450-mediated metabolism of chlorinated volatile organic compounds. Drug Metab Dispos 24: 203210.
  • Wang S, Zaharevitz DW, Sharma R, Marquez VE, Lewin NE, Du L et al. (1994). The discovery of novel, structurally diverse protein kinase C agonists through computer 3D-database pharmacophore search. Molecular modeling studies. J Med Chem 37: 44794489.
  • Wielert-Badt S, Lin JT, Lorenz M, Fritz S, Kinne RK (2000). Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis. J Med Chem 43: 16921698.
  • Willett P (2003). Similarity-based approaches to virtual screening. Biochem Soc Trans 31: 603606.
  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34: D668D672.
  • Wolber G, Langer T (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45: 160169.
  • Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J et al. (2003). Drug discovery in the ubiquitin regulatory pathway. Drug Discov Today 8: 746754.
  • Yu J, Paine MJ, Marechal JD, Kemp CA, Ward CJ, Brown S et al. (2006). In silico prediction of drug binding to CYP2D6: identification of a new metabolite of metoclopramide. Drug Metab Dispos 34: 13861392.
  • Zhang EY, Knipp GT, Ekins S, Swaan PW (2002a). Structural biology and function of solute transporters: implications for identifying and designing substrates. Drug Metab Rev 34: 709750.
  • Zhang EY, Phelps MA, Cheng C, Ekins S, Swaan PW (2002b). Modeling of active transport systems. Adv Drug Del Rev 54: 329354.
  • Zhao L, Brinton RD (2005). Structure-based virtual screening for plant-based ERbeta-selective ligands as potential preventative therapy against age-related neurodegenerative diseases. J Med Chem 48: 34633466.