SEARCH

SEARCH BY CITATION

References

  • Ali NN, Xu X, Brito-Martins M, Poole-Wilson PA, Harding SE, Fuller SJ (2004). Beta-adrenoceptor subtype dependence of chronotropy in mouse embryonic stem cell-derived cardiomyocytes. Basic Res Cardiol 99: 382391.
  • Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428: 668673.
  • Bartel S, Krause EG, Wallukat G, Karczewski P (2003). New insights into beta2-adrenoceptor signaling in the adult rat heart. Cardiovasc Res 57: 694703.
  • Brodde OE (1991). Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43: 203242.
  • Brown LA, Harding SE (1992). The effect of pertussis toxin on β-adrenoceptor responses in isolated cardiac myocytes from noradrenaline-treated guinea-pigs and patients with cardiac failure. Br J Pharmacol 106: 115122.
  • Chaudhary KW, Barrezueta NX, Bauchmann MB, Milici AJ, Beckius G, Stedman DB et al . (2005). Embryonic stem cells in predictive cardiotoxicity: laser capture microscopy enables assay development. Toxicol Sci 90: 149158.
  • Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG et al . (2000). The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87: 11721179.
  • del Monte F, Kaumann AJ, Poole-Wilson PA, Wynne DG, Harding SE (1993). Coexistence of functioning β1- and β2-adrenoceptors in single myocytes from human ventricle. Circulation 88: 854863.
  • Gorelik J, Ali NN, Shevchuk A, Lab M, Williamson C, Harding SE et al . (2006). Functional characterization of embryonic stem cell-derived cardiomyocytes using scanning ion conductance microscopy. Tissue Eng 12: 657664.
  • Harding SE, Ali NN, Brito-Martins M, Gorelik J (2007). The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. Pharmacol Ther 113: 341353.
  • Harding SE, Brown LA, del Monte F, Davies CH, O'Gara P, Vescovo G et al . (1996). Acceleration of contraction by β-adrenoceptor stimulation is greater in ventricular myocytes from failing than non-failing human hearts. Basic Res Cardiol 91 (Suppl 2): 5356.
  • He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res 93: 3239.
  • Hopwood AM, Harding SE, Harris P (1987). Pertussis toxin reduces the antiadrenergic effect of 2- chloroadenosine on papillary muscle and the direct negative inotropic effect of 2-chloroadenosine on atrium. Eur J Pharmacol 141: 423428.
  • Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A et al . (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407414.
  • Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G et al . (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22: 12821289.
  • Kuschel M, Zhou YY, Cheng H, Zhang SJ, Chen Y, Lakatta EG et al . (1999). G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. J Biol Chem 274: 2204822052.
  • Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S et al . (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167: 663671.
  • Lohse MJ, Engelhardt S, Eschenhagen T (2003). What is the role of beta-adrenergic signaling in heart failure Circ Res 93: 896906.
  • Molenaar P, Bartel S, Cochrane A, Vetter D, Jalali H, Pohlner P et al . (2001). Both beta(2)- and beta(1)-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of Fallot infants, consistent with selective coupling of beta(2)-adrenergic receptors to G(s)-protein. Circulation 102: 18141821.
  • Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den BS, Hassink R et al . (2003). Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107: 27332740.
  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M et al . (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664668.
  • Nagata K, Ye C, Jain M, Milstone DS, Liao R, Mortensen RM (2001). Galpha(i2) but not Galpha(i3) is required for muscarinic inhibition of contractility and calcium currents in adult cardiomyocytes. Circ Res 87: 903909.
  • Reinecke H, Poppa V, Murry CE (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34: 241249.
  • Reppel M, Boettinger C, Hescheler J (2004). Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes. Cell Physiol Biochem 14: 187196.
  • Satin J, Kehat I, Caspi O, Huber I, Arbel G, Itzhaki I et al . (2004). Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J Physiol (Lond) 559: 479496.
  • von Scheidt W, Bohm M, Stablein A, Autenrieth G, Erdmann E (1992). Antiadrenergic effect of M-cholinoceptor stimulation on human ventricular contractility in vivo. Am J Physiol 263: H1927H1931.
  • Wei H, Juhasz O, Li J, Tarasova YS, Boheler KR (2005). Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med 9: 804817.
  • Xiao R-P, Lakatta EG (1993). 1-Adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+ and Ca2+ current in single rat ventricular cells. Circ Res 73: 286300.
  • Xu C, Police S, Rao N, Carpenter MK (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91: 501508.
  • Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E et al . (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111: 1120.