SEARCH

SEARCH BY CITATION

Keywords:

  • chicken;
  • cyclin;
  • cyclin-dependent kinase;
  • ginsenoside;
  • granulosa cell;
  • signal transduction

The effect of GS (ginsenosides) on proliferation of chicken GCs (granulosa cells) from prehierarchical SYF (small yellow follicles) was evaluated, and involvement of the PKC (protein kinase C) signalling pathway as well as mRNA expression of cyclins and CDK (cyclin-dependent kinase) were investigated. Whole SYF or GCs isolated from SYF were cultured in Medium 199 supplemented with 0.5% FCS (fetal calf serum). After 16 h, the cells were challenged with GS alone or in combination with PKC inhibitor H7 or activator PMA (phorbol 12-myristate 13-acetate) for 24 h in serum-free medium. Results showed that in both whole follicles and pure GCs monolayer culture system, GS (0.1–10 μg/ml) significantly increased the number of GCs in SYF in a dose-dependent manner, and this stimulatory effect was inhibited by H7, but enhanced by PMA. Meanwhile, the PCNA-LI (proliferating cell nuclear antigen labelling index) of GCs displayed similar changes with the cell number. Mechanism of GS action was further evaluated in cultured GCs separated from SYF. Western blot analysis showed that 10 μg/ml GS increased PKC translocation from cytoplasm to the plasma membrane of the GCs to become the active state. This effect was blocked by H7. Furthermore, GS up-regulated the expression of cyclin D1/CDK6 and cyclin E/CDK2 mRNAs in GCs; however, inhibition of PKC with H7 attenuated this stimulatory effect. These results indicated that GS could stimulate proliferation of chicken GCs through activated PKC-involved up-regulation of cyclin D1/CDK6 and cyclin E/CDK2 genes, subsequently promoting development of the chicken prehierarchical follicles.