SEARCH

SEARCH BY CITATION

Keywords:

  • embryonal carcinoma stem cell;
  • embryonal development;
  • heat shock protein (HSP);
  • heat stress;
  • neural differentiation;
  • stress protein

Abstract

HSPs (heat shock proteins) have been recognized to maintain cellular homoeostasis during changes in microenvironment. The present study aimed to investigate the HSPs expression pattern in hierarchical neural differentiation stages from mouse embryonal carcinoma stem cells (P19) and its role in heat stressed exposed cells. For induction of HSPs, cells were heated at 42°C for 30 min and recovered at 37°C in different time points. For neural differentiation, EBs (embryoid bodies) were formed by plating P19 cells in bacterial dishes in the presence of 1 mM RA (retinoic acid) and 5% FBS (fetal bovine serum). Then, on the sixth day, EBs were trypsinized and plated in differentiation medium containing neurobasal medium, B27, N2 and 5% FBS and for an extra 4 days. The expression of HSPs and neural cell markers were evaluated by Western blot, flow cytometry and immunocytochemistry in different stages. Our results indicate that HSC (heat shock constant)70 and HSP60 expressions decreased following RA treatment, EB formation and in mature neural cells derived from heat-stressed single cells and not heat-treated EBs. While the level of HSP90 increased six times following maturation process, HSP25 was expressed constantly during neural differentiation; however, its level was enhanced with heat stress. Accordingly, heat shock 12 h before the initiation of differentiation did not affect the expression of neuroectodermal and neural markers, nestin and β-tubulin III, respectively. However, both markers increased when heat shock was induced after treatment and when EBs were formed. In conclusion, our results raise the possibility that HSPs could regulate cell differentiation and proliferation under both physiological and pathological conditions.