• apoptosis; melamine;
  • normal rat kidney (NRK)-52e cells;
  • p38 mitogen-activated protein kinase (MAPK) pathway;
  • reactive oxygen species (ROS)


There was an outbreak of urinary stones associated with consumption of melamine-tainted milk products in 2008 in China, leading to serious illness of many infants and even death. We have recently demonstrated that melamine causes oxidative damage on the NRK (normal rat kidney)-52e cells. The objective of this study was to explore the cellular signalling pathway that mediates the cell apoptosis induced by melamine in the NRK-52e cells. Fluorescence microscope showed that melamine enhanced intracellular ROS (reactive oxygen species) levels of the NRK-52e cells. AO/EB (acridine orange/ethidium bromide) staining and flow cytometry revealed that melamine increased apoptotic and necrotic percentages of the NRK-52e cells in a dose-dependent manner. Notably, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assays and flow cytometry displayed that SB203580, an inhibitor for p38 MAPK (mitogen-activated protein kinase) pathway, increased the proliferation of the NRK-52e cells and reduced the apoptotic and necrotic percentages of the NRK-52e cells. Western blots further demonstrated that p38 phosphorylation was activated by melamine in the NRK-52e cells and inhibitor SB203580 blocked the increase of p38 phosphorylation induced by melamine. Together, these results suggested that melamine causes apoptosis of the NRK-52e cells via excessive intracellular ROS and the activation of p38 MAPK pathway. This study thus offers a novel insight into molecular mechanisms by which melamine has adverse cytotoxicity on renal tubular epithelial cells.