Inhibition of GSK-3β enhances neural differentiation in unrestricted somatic stem cells




GSK-3β is a key molecule in several signalling pathways, including the Wnt/β-catenin signalling pathway. There is increasing evidence suggesting Wnt/β-catenin signalling is involved in the neural differentiation of embryonic, somatic and neural stem cells. However, a large body of evidence indicates that this pathway maintains stem cells in a proliferative state. To address this controversy, we have investigated whether the Wnt/β-catenin pathway is present and involved in the neural differentiation of newly introduced USSCs (unrestricted somatic stem cells). Our results indicate that the components of Wnt/β-catenin signalling are present in undifferentiated USSCs. We also show that the treatment of neurally induced USSCs with BIO (6-bromoindirubin-3′-oxime), a specific GSK-3β inhibitor and Wnt activator, for 5 and 10 days results in increased expression of a general neuronal marker (β-tubulin III). Moreover, the expression of pGSK-3β and stabilized β-catenin increased by BIO in neurally induced USSCs, indicates that the Wnt pathway is activated and functional in these cells. Thus, inhibition of GSK-3β in USSCs enhances their neural differentiation, which suggests a positive role of the Wnt/β-catenin signalling pathway towards neural fate.