• bone morphogenic protein 4 (BMP4);
  • bone marrow;
  • infertility;
  • magnetic-activated cell sorting (MACS);
  • primordial germ cell (PGC);
  • SSEA-1+ cells


Evidence of germ cell derivation from embryonic and somatic stem cells provides an in vitro model for the study of germ cell development, associated epigenetic modification and mammalian gametogenesis. More importantly, in vitro derived gametes also represent a potential strategy for treating infertility. In mammals, male and female gametes, oocyte and sperm, are derived from a specific cell population, PGCs (primordial germ cells) that segregate early in embryogenesis. We have isolated pluripotent SSEA-1+ (stage-specific embryonic antigen-1+) cells from mice bone marrow using a MACS (magnetic-activated cell sorting) system. SSEA-1+ cells were directly separated from the suspension of MMCs (murine mononuclear cells) harvested from bone marrow of 2–4-week-old mice. Flow-cytometry assay immediately after sorting and culturing under undifferentiated condition showed 55±7% and 87±4% purity respectively. RT-PCR (reverse transcription–PCR) analysis after differentiation of SSEA-1+ cells into derivations of three germ layers showed the pluripotency properties of isolated cells. SSEA-1+ cells were induced to differentiate along germ cell lineage by adding BMP4 (bone morphogenic factor-4) to the medium. Regarding the expression of germ cell markers (PGCs, male and female germ cell lineage), it was found that adding exogenous BMP4 to culture medium could differentiate pluripotent SSEA-1+ cells isolated from an adult tissue into gamete precursors, PGCs. Differentiated cells expressed specific molecular markers of PGCs, including Oct4, fragilis, Stella and Mvh (mouse vasa homologue). Therefore BMP4 is insufficient to induce SSEA-1+ cells derived from PGCs to develop further into late germ cells in vitro.