• 1
    Laskowski, M. & Qasim, M.A. (2000) What can the structures of enzyme–inhibitor complexes tell us about the structures of enzyme–substrate complexes? Biochim. Biophys. Acta 1477, 324337.
  • 2
    Bode, W. & Huber, R. (1991) Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433451.
  • 3
    Schechter, I. & Berger, A. (1967) On the size of the active site in proteases I. Papain. Biochem. Biophys. Res. Commun. 27, 157162.
  • 4
    Longstaff, C., Campbell, A.F. & Fersht, A.R. (1990) Recombinant chymotrypsin inhibitor 2: expression, kinetic analysis of inhibition with alpha-chymotrypsin and wild-type and mutant subtilisin BPN′, and protein engineering to investigate inhibitory specificity and mechanism. Biochemistry 29, 73397347.
  • 5
    Schellenberger, V., Braune, K., Hofmann, M.-J. & Jakube, H.-D. (1991) The specificity of chymotrypsin: a statistical analysis of hydrolysis data. Eur. J. Biochem. 199, 623636.
  • 6
    Malik, Z., Amir, S., Pál, G., Buzás, Zs. Várallyay, É., Antal, J., Szilágyi, Z.-, Vékey, K., Asbóth, B., Patthy, A. & Gráf, L. (1999) Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P1 and P1′ residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor. Biochim. Biophys. Acta. 1434, 143150.
  • 7
    Kellenberger, C., Boudier, C., Bermudez, I., Bieth, J.G., Luu, B. & Hietter, H. (1995) Serine proteinase inhibition by insect peptides containing a cysteine knot and a triple-stranded β-sheet. J. Biol. Chem. 270, 2551425519.
  • 8
    Patthy, A., Amir, S., Malik, Z., Bódi, Á., Kardos, J., Asbóth, B. & Gráf, L. Remarkable phylum selectivity of a Schisotcerca gregaria trypsin inhibitor: the possible role of enzyme–inhibitor flexibility. Arch. Biochem. Biophys. in press.
  • 9
    Roussel, A., Mathieu, M., Dobbhs, A., Luu, B., Cambillau, C. & Kellenberger, C. (2001) Complexation of two proteic insect inhibitors to chymotrypsin's active site suggests decoupled roles for binding and selectivity. J. Biol. Chem. 276, 3889338898.
  • 10
    Mer, G., Kellenberger, C., Koehl, P., Stote, R., Sorokine, O., Van Dorsselaer, A., Luu, B., Hietter, H. & Lefèvre, J.-F. (1994) Solution structure of PMP-D2, a 35-residue peptide isolated from the insect Locusta migratoria. Biochemistry 33, 154397115407.
  • 11
    Mer, G., Hietter, H., Kellenberger, C., Renatus, M., Luu, B. & Lefèvre, J.-F. (1996) Solution structure of PMP-C: a new fold in the group of small serine proteinase inhibitors. J. Mol Biol. 258, 158171.
  • 12
    Mer, G., Hietter, H. & Lefèvre, J.-F. (1996) Stabilization of proteins by glycosylation examined by NMR analysis of a fucosylated proteinase inhibitor. Nat. Struct. Biol. 3, 4553.
  • 13
    Mer, G., Dejaegere, A., Stote, R., Kiefer, B. & Lefèvre, J.-F. (1996) Structural dynamics of PMP-D2: an experimental and theoretical study. J. Phys. Chem. 100, 26672674.
  • 14
    Scott, R.H., Gorton, V.J., Harding, L., Patel, D., Pacey, S., Kellenberger, C., Hietter, H. & Bermudez, I. (1997) Inhibition of neuronal high voltage-activated calcium channels by insect peptides: a comparison with the actions of ω-conotoxin GVIA. Neuropharmacology 36, 195208.
  • 15
    Bontems, F., Roumestand, C., Gilquin, B., Ménez, A. & Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254, 15211523.
  • 16
    Pallaghy, P.K., Nielsen, K., Craik, D.J. & Norton, R.S. (1994) A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet and inhibitory polypeptides. Protein Sci. 3, 18331839.
  • 17
    Carugo, O., Lu, S., Luo, J., Gu, X., Liang, S., Strobl, S. & Pongor, S. (2001) Structural analysis of the amaranth alpha-amylase inhibitor: classification within the knottin fold superfamily and analysis of its functional flexibility. Protein Eng. 14, 629637.
  • 18
    Craik, J.D., Daly, N.L. & Waine, C. (2001) The cystine knot motif in toxins and implications for drug design. Toxicon 39, 4360.
  • 19
    Tripos Inc. (2001) SYBYL Molecular Modelling Package, Version 6.6. and 6.7. Tripos, Inc, St Louis, MO.
  • 20
    Redfield, C. (1993) Resonance assignment strategies for small proteins. In NMR of Macromolecules (Roberts, G.C.K., ed.), pp.␣7199. Oxford University Press, Oxford.
  • 21
    Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.
  • 22
    Wishart, D.S., Sykes, B.D. & Richards, F.M. (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 16471651.
  • 23
    Nilges, M., Clore, G.M. & Gronenborn, A.M. (1988) Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. FEBS Lett. 239, 129136.
  • 24
    Nilges, M., Kuszewski, J. & Brunger, A.T. (1991) In: Computational Aspects of the Study of Biological Macromolecules by NMR (Hoch, J.C., eds). Plenum Press, New York.
  • 25
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. & Bournem, P.E. (2000) The protein data bank. Nucleic Acids Res. 28, 235242.
  • 26
    Hyberts, S.G., Goldberg, M.S., Havel, T.F. & Wagner, G. (1992) The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1, 736751.
  • 27
    ETH Zürich (2000) MOLMOL-Molecule Analysis and Molecule Display, Version 2K.1. Institut für Molekularbiologie und Biophysik, ETH Zürich, Spectrospin AG, Faellanden, Switzerland & Koradi, R.
  • 28
    Klaus, W., Broger, C., Gerber, P. & Senn, H. (1993) Determination of the disulfide bonding pattern in proteins by local and global analysis of nuclear magnetic resonance data. J. Mol. Biol. 232, 897906. DOI: 10.1006/jmbi.1993.1438
  • 29
    Fujinaga, M., Sielecki, A.R., Read, R.J., Ardelt, W., Laskowski, M. Jr & James, M.N.G. (1987) Crystal and molecular structures of the complex of alpha-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 angstroms resolution. J. Mol. Biol. 195, 397418.
  • 30
    Werner, M.H. & Wemmer, D. (1992) Three-dimensional structure of soybean trypsin (slash) chymotrypsin bowman-birk in solution. Biochemistry 31, 9991010.
  • 31
    Cai, M., Gong, Y., Kao, J.L.-F., K. & Krishnamoorthi, R. (1995) Three-dimensional solution structure of Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy. Biochemistry 34, 52015211.
  • 32
    Francart, C., Dauchez, M., Alix, A.J.P. & Lippens, G. (1997) Solution structure of R-elafin, a specific inhibitor of elastase. J.␣Mol. Biol. 268, 666677.DOI: 10.1006/jmbi.1997.0983
  • 33
    Liu, J., Prakash, O., Cai, M., Gong, Y., Huang, Y., Wen, L., Wen, J.J., Huang, J.-K. & Krishnamoorthi, R. (1996) Solution structure and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy. Biochemistry 35, 15161524.
  • 34
    Liu, J., Gong, Y., Prakash, O., Wen, L., Lee, I., Huang, J.-K. & Krishnamoorthi, R. (1998) NMR studies of internal dynamics of serine proteinase protein inhibitors: binding region mobilities of intact and reactive-site hydrolized Cucurbita maxima trypsin inhibitor (CMTI)-II of the squash family and comparison with those of counterparts of CMTI of the potato I family. Protein Sci. 7, 132141.
  • 35
    Li, A. & Daggett, V. (1995) Investigation of the solution structure of chymotrypsin inhibitor 2 using molecular dynamics: comparison to X-ray crystallographic and NMR data. Protein Eng. 8, 11171128.
  • 36
    Shaw, G.L., Davis, B., Keeler, J. & Fersht, A.R. (1995) Backbone dynamics of chymotrypsin inhibitor 2: effect of breaking the active site bond and its implications for the mechanism of inhibition of serine proteinases. Biochemistry 34, 22252233.
  • 37
    Ludvigsen, S., Shen, H., Kjaer, M., Madsen, J.C. & Poulsen, F.M. (1991) Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals. J. Mol. Biol. 222, 621635.
  • 38
    Kraulis, P.J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946950.
  • 39
    Merritt, E.A. & Bacon, D.J. (1997) Raster3D Photorealistic Molecular Graphics. Methods Enzymol 277, 505524.