Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar


Correspondence: Siegfried Jahnke. Fax: + 49 201 183 4290; e-mail:


It is a matter of debate if there is a direct (short-term) effect of elevated atmospheric CO2 concentration (Ca) on plant respiration in the dark. When Ca doubles, some authors found no (or only minor) changes in dark respiration, whereas most studies suggest a respiratory inhibition of 15–20%. The present study shows that the measurement artefacts – particularly leaks between leaf chamber gaskets and leaf surface, CO2 memory and leakage effects of gas exchange systems as well as the water vapour (‘water dilution’) effect on DCO2 measurement caused by transpiration – may result in larger errors than generally discussed. A gas exchange system that was used in three different ways – as a closed system in which Ca increased continuously from 200 to 4200 mmol (CO2) mol-1 (air) due to respiration of the enclosed leaf; as an intermittently closed system that was repeatedly closed and opened during Ca periods of either 350 or 2000 mmol mol-1, and as an open system in which Ca varied between 350 and 2000 mmol mol-1– is described. In control experiments (with an empty leaf chamber), the respective system characteristics were evaluated carefully. When all relevant system parameters were taken into account, no effects of short-term changes in CO2 on dark CO2 efflux of bean and poplar leaves were found, even when Ca increased to 4200 mmol mol-1. It is concluded that the leaf respiration of bean and poplar is not directly inhibited by elevated atmospheric CO2.