SEARCH

SEARCH BY CITATION

References

  • Andrews JA, Schlesinger WH. 2001. Soil CO2 dynamics in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles 15: 149162.
  • Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: BigginsI, ed. Progress in photosynthesis research, vol. 1v.5, proceedings of the VII international photosynthesis congress. Dordrecht, The Netherlands: Martinus-Nijhoff, 221224.
  • Bolker BM, Pacala SW, Parton WJ. 1998. Linear analysis of soil decomposition: insights from the CENTURY model. Ecological Applications 8: 425439.
  • Cannell MGR, Thornley JHM. 1998. N-poor ecosystems may respond more to elevated [CO2] than N-rich ones in the long term. A model analysis of grassland. Global Change Biology 4: 431442.
  • Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J. 1999. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80: 14751494.
  • Comins HN, McMurtrie RE. 1993. Long-term biotic response of nutrient-limited forest ecosystems to CO2-enrichment: equilibrium behavior of integrated plant-soil models. Ecological Applications 3: 666681.
  • DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR, Schlesinger WH. 1999. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science 284: 11771179.
  • Ellsworth DS. 2000. Seasonal CO2 assimilation and stomatal limitations in a Pinus taeda canopy with varying climate. Tree Physiology 20: 425435.
  • Farquhar GD, Von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 7890.
  • Hendrey GR, Ellsworth DS, Lewin KF, Nagy J. 1999. A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biology 5: 293310.
  • Hu S, Firestone MK, Chapin FS III. 1999. Soil microbial feedbacks to atmospheric CO2 enrichment. Trends in Ecology and Evolution 14: 433437.
  • Jenkinson DS, Rayner JH. 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123: 298305.
  • Jordan DN, Zitzer SF, Hendrey GR, Lewin KF, Nagy J, Nowak RS, Smith SD, Coleman JS, Seemann JF. 1999. Biotic, abiotic and performance aspects of the Nevada desert Free-Air CO2 Enrichment (FACE) facility. Global Change Biology 5: 659668.
  • Kimball BA, LaMorte RL, Seay RS, Pinter PJ, Jr Rokey RR, Hunsaker DJ, Dugas WA, Heuer ML, Mauney JR, Hendrey GR, Lewin KF, Nagy J. 1994. Effects of free-air CO2 enrichment on energy balance and evapotranspiration of cotton. Agricultural and Forest Meteorology 70: 259278.
  • Luo Y, Medlyn B, Hui D, Ellsworth D, Reynolds JF, Katul G. 2001a. Gross primary productivity in the Duke Forest: Modeling synthesis of CO2 experiment and eddy-flux data. Ecological Applications 11: 239252.
  • Luo Y, Reynolds JF. 1999. Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80: 15681583.
  • Luo Y, Wu L, Andrews JA, White L, Matamala R, Schafer KVR, Schlesinger WH. 2001b. Elevated CO2 differentiates ecosystem carbon processes: Deconvolution analysis of Duke Forest FACE data. Ecological Monographs 71: 357376.
  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, DeAgngelis P, Scarascia-Mugnozza G. 2001. Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytologist 150: 465476.
  • Norby RJ, Todd DE, Fults J, Johnson DW. 2001. Allometric determination of tree growth in a CO2-enriched sweetgum stand. New Phytologist 150: 477487.
  • Okada M, Lieffering M, Nakamura N, Yoshimoto M, Kim HY, Kobayashi K. 2001. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytologist 150: 251260.
  • Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal 51: 1173 1179.
  • Rastetter EB, Ågren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecological Applications 7: 444460.
  • Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410: 809812.
  • Tabrizi H, Schinner K, Spors J, Hansen U. 1998. Deconvolution of the three components of the photoacoustic signal by curve fitting and the relationship of CO2 uptake to proton fluxes. Photosynthesis Research 57: 101115.
  • Thompson MV, Randerson JT. 1999. Impulse response functions of terrestrial carbon cycle models: method and application. Global Change Biology 5: 371394.
  • Van Kessel C, Horwath WR, Harttwig U, Harris D, Lüscher A. 2000. Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Global Change Biology 6: 435444.
  • White L, Luo Y. 2001. Estimation of carbon transfer coefficients using Duke Forest Free-Air CO2 Enrichment data. Applied Mathematics and Computation. (In press.)
  • Wood SN. 1997. Inverse problems and structured-population dynamics. In: TuljapurkarS, CaswellH, eds. Structured-population models in marine, terrestrial, and freshwater systems. New York, USA: Chapman & Hall, 555586.