SEARCH

SEARCH BY CITATION

References

  • Barker DG, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Guy P, Muel X, Tourneur J, Denarie J, Huguet T. 1990. Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium-legume symbiosis. Plant Molecular Biology Reporter 8: 4049.
  • Caetano-Anolles G, Gresshoff PM. 1991. Plant genetic control of nodulation. Annual Review of Microbiology 45: 345382.
  • Cyranoski D. 2001. Japanese legume project may help to fix nitrogen problem. Nature 409: 272.
  • Dainese-Hatt P, Fischer HM, Hennecke H, James P. 1999. Classifying symbiotic proteins from Bradyrhizobium japonicum into functional groups by proteome analysis of altered gene expression levels. Electrophoresis 20: 35143520.
  • Downie JA, Bonfante P. 2000. Development and good breeding in legume models: poise and peas. New Phytologist 148: 79.
  • Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. 2000. Metabolite profiling for plant functional genomics. Nature Biotechnology 18: 11571161.
  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387: 394401.
  • Fuller F, Kuenstner PW, Nguyen T, Verma DPS. 1983. Soybean nodulin genes: Analysis of cDNA clones reveals several major tissue-specific sequences in nitrogen-fixing root nodules. Proceedings of the National Academy of Sciences, USA 80: 2594.
  • Gottfert M, Rothlisberger S, Kundig C, Beck C, Marty R, Hennecke H. 2001. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. Journal of Bacteriology 183: 14051412.
  • Guerreiro N, Ksenzenko VN, Djordjevic MA, Ivashina TV, Rolfe BG. 2000. Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA. Journal of Bacteriology 182: 45214532.
  • Guerreiro N, Redmond JW, Rolfe BG, Djordjevic MA. 1997. New Rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins. Molecular Plant–Microbe Interactions 10: 506516.
  • Handberg K, Stougaard J. 1992. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant Journal 2: 487496.
  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Research 7: 331338.
  • Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S. 2000. Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Research 7: 323330.
  • Kouchi H, Hata S. 1993. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Molecular and General Genetics 238: 106119.
  • Long SR. 2001. Genes and signals in the Rhizobium-legume symbiosis. Plant Physiology 125: 6972.
  • MacKintosh C. 1998. Regulation of cytosolic enzymes in primary metabolism by reversible protein phosphorylation. Current Opinion in Plant Biology 1: 224229.
  • McCallum CM, Comai L, Greene EA, Henikoff S. 2000. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiology 123: 439442.
  • Natera SH, Guerreiro N, Djordjevic MA. 2000. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Molecuar Plant–Microbe Interactions 13: 9951009.
  • Panter S, Thomson R, De Bruxelles G, Laver D, Trevaskis B, Udvardi M. 2000. Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Molecular Plant–Microbe Interactions 13: 325333.
  • Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R. 1999. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Molecular Microbiology 32: 415425.
  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A. 2001. Metabolic Profiling Allows Comprehensive Phenotyping of Genetically or Environmentally Modified Plant Systems. Plant Cell 13: 1129.
  • Schauser L, Handberg K, Sandal N, Stiller J, Thykjaer T, Pajuelo E, Nielsen A, Stougaard J. 1998. Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Molecular and General Genetics 259: 414423.
  • Schauser L, Roussis A, Stiller J, Stougaard J. 1999. A plant regulator controlling development of symbiotic root nodules. Nature 402: 191195.
  • Sullivan JT, Ronson CW. 1998. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proceedings of the National Academy of Sciences, USA 95: 51455149.
  • Szczyglowski K, Hamburger D, Kapranov P, De Bruijn FJ. 1997. Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule-specific genes. Plant Physiology 114: 13351346.
  • Thykjaer T, Stiller J, Handberg K, Jones J, Stougaard J. 1995. The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Molecular Biology 27: 981993.
  • Udvardi MK. 2001. Legume models strut their stuff. Molecular Plant–Microbe Interactions 14: 69.
  • Udvardi MK, Day DA. 1997. Metabolite transport across symbiotic membranes of legume nodules. Annual Review of Plant Physiology and Plant Molecular Biology 48: 493523.