Get access

Dispersal vs. vicariance in the Mediterranean: historical biogeography of the Palearctic Pachydeminae (Coleoptera, Scarabaeoidea)


* Isabel Sanmartín, Department of Systematic Zoology, Evolutionary Biology Centre, Norbyvägen 18D, 752 36-Uppsala, Sweden.


Aim  The geological evolution of the Mediterranean region is largely the result of the Tertiary collision of the African and Eurasian Plates, but also a mosaic of migrating island arcs, fragmenting tectonic belts, and extending back-arc basins. Such complex paleogeography has resulted in a ‘reticulate’ biogeographical history, in which Mediterranean biotas repeatedly fragmented and merged as dispersal barriers appeared and disappeared through time. In this study, dispersal-vicariance analysis (DIVA) is used to assess the relative role played by dispersal and vicariance in shaping distribution patterns in the beetle subfamily Pachydeminae Reitter, 1902 (Scarabaeoidea), an example of east–west Mediterranean disjunction.

Location  The Mediterranean region, including North Africa, the western Mediterranean, Balkans–Anatolia, Middle East, Caucasus, the Iranian Plateau, and Central Asia.

Methods  A phylogenetic hypothesis of the Palearctic genera of Pachydeminae in conjunction with distributional data was analysed using DIVA. This method reconstructs the ancestral distribution in a given phylogeny based on the vicariance model, while allowing dispersal and extinction to occur. Unlike other methods, DIVA does not enforce area relationships to conform to a hierarchical ‘area cladogram’, so it can be used to reconstruct ‘reticulate’ biogeographical scenarios.

Results  Optimal reconstructions, requiring 23 dispersal events, suggest that the ancestor of Pachydeminae was originally present in the south-east Mediterranean region. Basal splitting within the subfamily was caused by vicariance events related to the late Tertiary collision of the African microplates Apulia and Arabia with Eurasia, and the resultant arise of successive dispersal barriers (e.g. the Red Sea, the Zagros Mountains). Subsequent diversification in Pachydeminae involved multiple speciation events within the Middle East and Iran–Afghanistan regions, which gave rise to the least speciose genera of Pachydeminae (e.g. Otoclinius Brenske, 1896). Finally, the presence of Pachydeminae in the western Mediterranean region seems to be the result of a recent dispersal event. The ancestor of the Iberian genera Ceramida Baraud, 1987 and Elaphocera Gené, 1836 probably dispersed from the Middle East to the Iberian Peninsula across North Africa and the Gibraltar Strait during the ‘Messinian salinity crisis’ at the end of the Miocene.

Main conclusions  Although the basal diversification of Pachydeminae around the Mediterranean appears to be related to vicariance events linked to the geological formation of the Mediterranean Basin, dispersal has also played a very important role. Nearly 38% of the speciation events in the phylogeny resulted from dispersal to a new area followed by allopatric speciation between lineages. Relationships between western and eastern Mediterranean disjuncts are usually explained by dispersal through Central Europe. The biogeographical history of the Pachydeminae corroborates other biogeographical studies that consider North Africa to be an alternative dispersal route by which Mediterranean taxa could have achieved circum-Mediterranean distributions.