Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system

Authors


: Professor Monique Dubois-Dalcq, as above.
E-mail: mdalcq@pasteur.fr

Abstract

Stromal cell-derived factor 1 (SDF-1) is an alpha-chemokine that stimulates migration of haematopoietic progenitor cells and development of the immune system. SDF-1 is also abundantly and selectively expressed in the developing and mature CNS, as we show here. At embryonic day 15, SDF-1 transcripts were detected in the germinal periventricular zone and in the deep layer of the forming cerebral cortex. At birth, granule cells in the cerebellum and glial cells of the olfactory bulb outer layer showed an SDF-1 in situ hybridization signal that decreased progressively within the next 2 weeks. In other regions such as cortex, thalamus and hippocampus, SDF-1 transcripts detected at birth progressively increased in abundance during the postnatal period. SDF-1 protein was identified by immunoblot and/or immunocytochemistry in most brain regions where these transcripts were detected. SDF-1 was selectively localized in some thalamic nuclei and neurons of the fifth cortical layer as well as in pontine and brainstem nuclei which relay the nociceptive response. The presence of SDF-1 transcripts in cerebellar granule cells was correlated with their migration from the external to the inner granular layers with disappearance of the signal when migration was completed. In contrast, SDF1 mRNA signal increased during formation of the hippocampal dentate gyrus and stayed high in this region throughout life. The selective and regulated expression of SDF-1 in these regions suggests a role in precursor migration, neurogenesis and, possibly, synaptogenesis. Thus this alpha chemokine may be as essential to nervous system function as it is to the immune system.

Ancillary