• cis-acting signals;
  • RNA localization;
  • RNA-binding protein;
  • trans-acting factors;
  • UV crosslinking analysis


The concept of mRNA localization suggests that this process is mediated by sequences residing in the transcript to which proteins specifically bind and ultimately deliver the mRNA along cytoskeletal elements to specific intracellular destinations. The mRNA encoding the vasopressin (VP) precursor protein is localized to the nerve cell processes both in hypothalamic magnocellular neurons and in primary cultured neurons derived from embryonic rat superior cervical ganglia microinjected with a corresponding eukaryotic expression vector. The last 395 nucleotides of the VP mRNA encompassing part of the coding region, as well as the complete 3′-untranslated region, are sufficient to confer dendritic targeting to a normally nonlocalized reporter transcript. Here we report that, by employing in vitro crosslinking analyses with rat brain proteins and radiolabelled VP transcripts, an RNA-binding protein specifically interacts with the dendritic localizer sequence of the VP mRNA. This protein is enriched in nerve cell tissues. Peripheral tissues and various cell lines contain only low amounts of the binding activity. It therefore represents a candidate protein that may be involved in any aspect related to subcellular VP mRNA sorting in nerve cells, including transport and anchoring of the mRNA and possibly its translational control.