Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa

Authors


U. B. Priefer. Fax: 49 241 80-22637; E-mail:priefer@bio1.rwth-aachen.de

Abstract

A total of 360 Rhizobium leguminosarum bv. viciae strains was isolated from three brown-coal mining restoration fields of different age and plant cover (without and in the first and second year of alfalfa, Medicago sativa, cultivation) using two host species (Viciahirsuta and Pisumsativum) as capture plants. The strains were genetically typed by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-generated 16S-23S ribosomal DNA intergenic spacer regions (IGS–RFLP) and characterized by plasmid profiles and RFLP analysis of amplified nodABC genes. The R. leguminosarum bv. viciae population was dominated by the same group of strains (irrespective of the trap plant used). According to type richness, the genetic diversity of indigenous R. leguminosarum in the second year of restoration was lower than in the first year and it resembled that of the fallow field, except for plasmid types, in which it was higher than that of the fallow field. Some of the less frequent nodABC genotypes were associated with distinct chromosomal IGS genotypes and symbiotic plasmids (pSyms) of different sizes, indicating that horizontal transfer and rearrangements of pSym can occur in natural environments. However, the dominant pSym and chromosomal genotypes were strictly correlated suggesting a genetically stable persistence of the prevailing R. leguminosarum bv. viciae genotypes in the absence of its host plant.

Ancillary