SEARCH

SEARCH BY CITATION

Keywords:

  • Drosophila melanogaster;
  • ectopic recombination;
  • mutation-selection balance;
  • parthenogenesis;
  • transposition rate variation

Long-term coevolution of transposable elements (TEs) in sexual hosts leads to evolution of extremely active and dangerous mutagens kept in tenuous check by host-derived mechanisms and via natural selection against TE-rich genomes. To the extent that sexual reproduction and recombination are important in maintaining a stable TE copy number and a tolerable mutation load, the switch to clonality from sexual reproduction can be extremely damaging and, generally, should lead to clonal lineage extinction. Surprisingly however, the loss of powerful selective mechanisms constraining TEs can be beneficial in the short-term by immediately eliminating selective load and possibly promoting the early success of clonal lineages. The clonal lineages that do survive in the long-term must find a way to eliminate or domesticate TEs. Indeed bdelloid rotifers, which are ancient asexuals, do appear to have lost most of the otherwise wide-spread TEs and might have domesticated others. The path to this TE-free haven is anything but clear at the moment. We have considered a novel scenario of instantaneous inactivation of TEs by starting off with a genome carrying repressive host alleles for all TEs in the genome. We show that such a scenario appears plausible and provide some limited empirical evidence in its support. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 33–41.