Arousal increases baroreflex inhibition of muscle sympathetic activity


B. Gunnar Wallin, Department of Clinical Neurophysiology, Sahlgren University Hospital, S-41345 Göteborg, Sweden.


Aim: Surprising sensory stimuli causing arousal are known to evoke short-lasting activation of human sympathetic activity in skin but not in muscle nerves. In fact, anecdotal observations suggest that muscle sympathetic activity may be inhibited. To test this hypothesis, the effects of surprising somatosensory (electrical skin pulses) or visual (flash) stimuli on multiunit muscle sympathetic activity were studied in 36 healthy subjects, aged 19–71 years.

Methods: The stimuli were given either 200 or 400 ms after the R-wave of the electrocardiogram. Dummy stimuli, consisting of trigger pulses without sensory stimuli, served as controls.

Results: On a group basis, a single sensory stimulus of either type attenuated the amplitude of one or two sympathetic bursts, while no such effects occurred after dummy stimuli. Individually, the inhibition was evoked by at least one stimulus modality or delay in 16 subjects, whereas in three subjects no significant inhibition occurred. Electrodermal signs of skin sympathetic activation were present in all subjects. Compared with one, five repeated electrical skin pulses induced only minor additional inhibition of muscle sympathetic activity, indicating marked habituation of the neural response. In nine subjects, the experiments were repeated once and in three subjects twice (with intervals of 2–3 months); in 11 of the12 subjects, the sympathetic effects were reproducible. In the group of subjects without significant sympathetic inhibition the stimuli induced a small, transient increase of mean blood pressure, which was not present in the group with sympathetic inhibition.

Conclusion: The finding that different sensory stimuli induce similar effects that habituate markedly on repetition suggests that the inhibition of muscle sympathetic activity is because of arousal. The interindividual differences in sympathetic and blood pressure effects may be part of interindividual differences in behavioural responses to stress.