SEARCH

SEARCH BY CITATION

Keywords:

  • autonomic;
  • ganglion;
  • motor unit;
  • nociceptors;
  • pre-ganglionic;
  • sympathetic;
  • vasoconstrictor;
  • vasodilator

Abstract

Aim:  In this article, we review the functional organization of the peripheral autonomic pathways regulating the vasculature.

Results:  The final motor neurones in vasomotor pathways tend to be smaller than neurones in other autonomic pathways. This suggests that they have relatively smaller target territories and receive fewer pre-ganglionic inputs than non-vasomotor neurones. Nevertheless, single vasomotor neurones project to large areas of the vasculature separated by up to 7 mm. Different functional pools of vasomotor neurones project to specific segments of the vasculature, allowing for the selective neural control of resistance in vessels in proximal or distal regions of the vascular bed. In many cases, each functional pool of vasomotor neurones utilizes a characteristic combination of cotransmitters. The various pools of final motor neurones in vasomotor pathways receive convergent synaptic input from different pools of pre-ganglionic neurones, many of which also contain neuropeptides which enhance the excitability of the final motor neurones. The excitability of vasomotor neurones regulating gastrointestinal and mesenteric blood flow, also can be increased by the actions of peptides such as substance P that are released from visceral nociceptors.

Conclusions:  We propose that autonomic pathways regulating the vasculature are organized into ‘vasomotor units’. Each vasomotor unit consists of a pre-ganglionic neurone, the final motor neurones it innervates, and the blood vessels that they regulate. The vasomotor units are likely to be grouped into functional pools that can be recruited as necessary to provide highly specific, graded control of blood flow both within and between vascular beds.