SEARCH

SEARCH BY CITATION

References

  • 1
    Bertz RJ, Granneman GR. Use of in vitro data and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210258.
  • 2
    Compilation of CYP1A2 Substrates. Available at: http:www.georgetown.edudepartmentspharmacologydavetab.html
  • 3
    Gentest Database of CYP1A2 Substrates. Available at: http:www.gentest.comhumanp450database
  • 4
    Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci USA 1989; 86: 76967700.
  • 5
    Kalow W, Tang BK. Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther 1991; 50: 508519.
  • 6
    Butler MA, Lang NP, Young JF et al. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics 1992; 2: 116127.
  • 7
    Boobis AR, Lynch AM, Murray S et al. CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res 1994; 54: 8994.
  • 8
    Gooderham NJ, Murray S, Lynch AM et al. Heterocyclic amines: evaluation of their role in diet associated human cancer. Br J Clin Pharmacol 1996; 42: 9198.
  • 9
    Lang NP, Butler MA, Massengill J et al. Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol Biomarkers Prev 1994; 3: 675682.
  • 10
    Daly AK, Cholerton S, Armstrong M, Idle JR. Genotyping for polymorphisms in xenobiotic metabolism as a predictor of disease susceptibility. Environ Health Perspect 1994; 102 (Suppl 9): 5561.
  • 11
    Kalow W, Tang BK. Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking. Clin Pharmacol Ther 1991; 49: 4448.
  • 12
    Quattrochi LC, Vu T, Tukey RH. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J Biol Chem 1994; 269: 69496954.
  • 13
    Nakajima M, Yokoi T, Mizutani M, Shin S, Kadlubar FF, Kamataki T. Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol Biomarkers Prev 1994; 3: 413421.
  • 14
    MacLeod SL, Tang Y-M, Yokoi T et al. The role of recently discovered genetic polymorphism in the regulation of the human CYP1A2 gene. Proc Am Assoc Cancer Res 1998; 39: 396.
  • 15
    Chida M, Yokoi T, Fukui T, Kinoshita M, Yokota J, Kamataki T. Detection of three genetic polymorphisms in the 5′-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res 1999; 90: 899902.
  • 16
    Huang JD, Guo WC, Lai MD, Guo YL, Lambert GH. Detection of a novel cytochrome P-450 1A2 polymorphism (F21L) in Chinese. Drug Metab Dispos 1999; 27: 98101.
  • 17
    Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T. Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803808.
  • 18
    Sachse C, Brockmöller J, Bauer S, Roots I. Functional significance of a C[RIGHTWARDS ARROW]A polymorphism in intron 1 of the cytochrome P450 1A2 (CYP1A2) gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445449.
  • 19
    Welfare MR, Aitkin M, Bassendine MF, Daly AK. Detailed modelling of caffeine metabolism and examination of the CYP1A2 gene: lack of a polymorphism in CYP1A2 in Caucasians. Pharmacogenetics 1999; 9: 367375.
  • 20
    Current Up-to-Date CYP1A2 Allele Nomenclature Available at: http:www.imm.ki.seCYPallelescyp1a2.htm. Accessed 2 July 2002.
  • 21
    Campbell ME, Spielberg SP, Kalow W. A urinary metabolite ratio that reflects systemic caffeine clearance. Clin Pharmacol Ther 1987; 42: 157165.
  • 22
    Xie X, Ott J. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 1993; 53: 1107.
  • 23
    Zhao JH, Curtis D, Sham PC. Model-free analysis and permutation test for allelic associations. Hum Hered 2000; 50: 133139.
  • 24
    Ingelman-Sundberg M, Daly AK, Nebert D, Oscarson M. Human Cytochrome P450 (CYP) Allele Nomenclature Committee Available at: http:www.imm.ki.seCYPalleles
  • 25
    Daly AK, Brockmöller J, Broly F et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 1996; 6: 193201.
  • 26
    Chevalier D, Cauffiez C, Allorge D et al. Five novel natural allelic variants -951A[RIGHTWARDS ARROW]C, 1042G[RIGHTWARDS ARROW]A (D348N), 1156A[RIGHTWARDS ARROW]T (I386F), 1217G[RIGHTWARDS ARROW]A (C406Y) and 1291C[RIGHTWARDS ARROW]T (C431Y) of the human CYP1A2 gene in a French Caucasian population. Hum Mutat 2001; 17: 355356.
  • 27
    Aitchison KJ, Gonzalez FJ, Quattrochi LC et al. Identification of novel polymorphisms in the 5′ flanking region of CYP1A2, characterization of interethnic variability, and investigation of their functional significance. Pharmacogenetics 2000; 10: 695704.
  • 28
    Spigelman AD, Farmer KC, Oliver S et al. Caffeine phenotyping of cytochrome P4501A2, N-acetyltransferase, and xanthine oxidase in patients with familial adenomatous polyposis. Gut 1995; 36: 251254.
  • 29
    MacLeod S, Sinha R, Kadlubar FF, Lang NP. Polymorphisms of CYP1A1 and GSTM1 influence the in vivo function of CYP1A2. Mutat Res 1997; 376: 135142.
  • 30
    Lampe JW, King IB, Li S et al. Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 2000; 21: 11571162.