• 1
    Rosario DJ, Cutina PE, Chapple CR, Milroy E. The effects of single dose darifenacin on cystometric parameters and salivary flow in patients with urge incontinence secondary to detrusor instability. Eur Urol 1996; 30 (Abstr. 896): 240.
  • 2
    Abrams P, Kelleher CJ, Kerr LA, Rogers RG. Overactive bladder significantly affects overall quality of life. Am J Manag Care 2000; 6 (11 Suppl.): S580S590.
  • 3
    Milsom I, Abrams P, Cardozo L, Roberts RG, Thuroff J, Wein AJ. How widespread are the symptoms of an overactive bladder and how are they managed? A population-based prevalence study. BJU Int 2001; 87: 760766.
  • 4
    Newgreen DT, Napier C, Naylor A. Characterization of functional muscarinic receptors in human bladder. Eur Urol 2002; 1 (Suppl. 1): 132 (Abstract 519).
  • 5
    Gupta P, Anderson C, Carter A, Casey J, Newgreen D. In vivo bladder selectivity of darifenacin, a new M3 antimuscarinic agent in the anaesthetized dog. Eur Urol 2002; 1 (Suppl. 1): 131 (Abstract 515).
  • 6
    Alabaster AV. Discovery and development of selective M3 antagonists for clinical use. Life Sci 1997; 60: 10531060.
  • 7
    Quinn P, McIntyre P, Miner WD, Wallis RM. In vivo profile of darifenacin, a selective muscarinic M3 receptor antagonist. Br J Pharmacol 1996; 119: 198P.
  • 8
    Wallis RM, Burges RA, Cross PE, MacKenzie AR, Newgreen DT, Quinn P. Darifenacin, a selective muscarinic M3 antagonist. Pharmacol Res 1995; 31S: 54.
  • 9
    Smith CM, Wallis RM. Characterisation of [3H]-darifenacin as a novel radioligand for the study of muscarinic M3 receptors. J Recept Signal Transduct Res 1997; 17: 177184.
  • 10
    Mundy AR, Abrams P, Chapple CR, Neal DE. Darifenacin, the first selective M3 antagonist for overactive bladder: comparison with oxybutynin on ambulatory urodynamic monitoring and salivary flow. ICS 2001; Seoul, Korea,
  • 11
    Chapple CR, Yamanishi T, Chess-Williams R. Muscarinic receptor subtypes and management of the overactive bladder. Urology 2002; 60 (Suppl. 5A): 8289.
  • 12
    Beaumont KC, Cussans NJ, Nichols DJ, Smith DA. Pharmacokinetics and metabolism of darifenacin in the mouse, rat, dog and man. Xenobiotica 1998; 28: 6375.
  • 13
    Kerbusch T, Wählby U, Milligan PA, Karlsson MO. Population pharmacokinetic modelling of darifenacin and its metabolite using pooled data incorporating saturable first pass metabolism, CYP2D6-genotype and formulation-dependent bioavailability. Br J Clin Pharmacol DOI: 10.1046/j.1365-2125.2003.01967.
  • 14
    Kaye B, Herron WJ, MacRae PV et al. Rapid, solid phase extraction technique for the high-throughput assay of darifenacin in human plasma. Anal Chem 1996; 68: 16581660.
  • 15
    Brion N, Beaumont D, Advenier C. Evaluation of the antimuscarinic activity of atropine, terfenadine and mequitazine in healthy volunteers. Br J Clin Pharmacol 1988; 25: 2732.
  • 16
    Beal SL, Boeckman AJ, Sheiner LW. NONMEM users guide, Part VI, PREDPP guide. San Francisco: NONMEM Project Group, University of California, 1992.
  • 17
    Boeckman AJ, Sheiner LW, Beal SL. NONMEM users guide, Part V, Introductory guide. San Francisco: NONMEM Project Group, University of California, 1994.
  • 18
    Karlsson MO, Jonsson EN, Wiltse CG, Wade JR. Assumption testing in population pharmacokinetic models: illustrated with an analysis of moxonidine data from congestive heart failure patients. J Pharmacokinet Biopharm 1998; 26: 207246.
  • 19
    Wählby U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokin Biopharmaceut 2001; 28: 231252.
  • 20
    Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokin Biopharmaceut 1992; 20: 511528.
  • 21
    Jonsson EN, Karlsson MO. Xpose – an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Meth Programs Biomed 1999; 58: 5164.
  • 22
    Tuk B, Van Oostenbruggen MF, Herben VMM, Mandema JW, Danhof M. Characterization of the pharmacodynamic interaction between parent drug and active metabolite in vivo: midazolam and α-OH-midazolam. J Pharmacol Exp Ther 1999; 289: 10671074.
  • 23
    Danhof M, Mandema JW, Stijnen AM. The in vivo study of drug action. In Pharmacokinetic complexities of pharmacodynamic studies in vivo, Chapter 3, eds Van BoxtelCJ, HolfordNHG, DanhofM. Amsterdam: Elsevier Science Publishers, 1992.
  • 24
    Rydberg T, Jönsson A, Karlsson MO, Melander A. Concentration–effect relationships of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1997; 43: 373381.
  • 25
    Zuideveld KP, Rusiç-Pavletiç J, Maas HJ, Peletier LA, Van der Graaf PH, Danhof M. Pharmacokinetic–pharmacodynamic modeling of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine in rats. J Pharmacol Exp Ther 2002; 303: 11301137.
  • 26
    Äbelö A, Gabrielsson J, Holstein B, Eriksson UG, Holmberg J, Karlsson MO. Pharmacodynamic modelling of reversible gastric acid pump inhibition in dog and man. Eur J Pharm Sci 2001; 14: 339346.
  • 27
    Ionescu S, Badita D, Artino M et al. Diurnal behaviour of some salivary flow parameters in patients with diabetes mellitus (flow rate, pH, thiocianat, LDH activity) – note II. Rom J Physiol 1998; 35: 8589.