The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo

Authors


Prof. AarneOikarinen E-mail: aarne.oikarinen@oulu.fi

Abstract

The effects of topical betamethasone-17-valerate on collagen propeptide levels, collagen mRNA level, lysyl oxidase mRNA and matrix metalloproteinase (MMP)-1 and MMP-2 mRNA levels were studied in human skin. Three days' treatment of healthy skin with topical betamethasone caused a 70–80% decrease in type I and III collagen propeptides in suction blister fluid. A similar decrease was found in type I collagen mRNA when assayed by either slot-blot hybridization or a quantitative polymerase chain reaction method, indicating that the decrease in collagen synthesis after topical glucocorticoid treatment is apparently due to a decrease in corresponding mRNA. mRNA of lysyl oxidase, which is an important enzyme catalysing the cross-linking of collagen chains, and collagen-degrading enzyme MMP-1 and MMP-2 mRNAs were not decreased in the same skin samples. This suggests that in vivo, glucocorticoids modulate variably the genes involved in collagen synthesis and degradation. Our study provides a solid molecular basis for glucocorticoid-induced dermal atrophy, which results from the decrease in functional collagen mRNA in the skin.

Ancillary