• platelet;
  • Glanzmann's thrombasthenia;
  • glycoprotein IIb;
  • IIIa;
  • adhesion;
  • qualitative;
  • quantitative mutations

We have identified a patient designated as (GTa) with Glanzmann's Thrombasthenia (GT) diagnosed on the basis of a prolonged bleeding time and failure of the patient's platelets to aggregate. The number of glycoprotein (GP)IIb/IIIa receptors on the platelet surface was 37% of normal and those receptors displayed a defect in soluble fibrinogen binding. Nevertheless, GTa platelets showed increased adhesion to solid-phase fibrinogen and binding affinity for the RGD-mimetic 3H-SC52012, a non-peptide GPIIb/IIIa antagonist. Dithiothreitol (DTT) and ADP enhanced the affinity for [3H]-SC52012 in normal platelets, but had little effect in GTa platelets. These findings suggested that GTa platelets were locked in an altered affinity state. Genetic analysis showed that GTa was a compound heterozygote for the GPIIIa gene. One allele showed a deletion at the 3′ end of exon 3 resulting in a premature stop codon. The second GPIIIa allele had a G to A transition at nucleotide 577, resulting in a Val193Met substitution. HEK 293T cells transfected with mutant GPIIb/IIIaV193M bound [3H]-SC52012 with a higher affinity than wild-type GPIIb/IIIa, and this was not increased by DTT. The mutant receptor distinguishes between platelet adhesion and aggregation, and demonstrates the phenotype that may be expected when platelet aggregation alone is inhibited.