Matrix metalloproteinase and tissue inhibitors of metalloproteinase secretion by haematopoietic and stromal precursors and their production in normal and leukaemic long-term marrow cultures


Dr Anna Janowska-Wieczorek, Department of Medicine, University of Alberta, CBS Building, 8249–114 Street, Edmonton, Alberta, Canada. E-mail:


Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) regulate the turnover of the extracellular matrix and may modulate the biology of haematopoietic cells. We investigated whether MMPs and TIMPs are produced in long-term marrow cultures (LTMCs) established from normal donors and acute myelogenous leukaemia (AML) patients, and by fibroblast- (F), granulocyte macrophage- (GM) and megakaryocyte- (Meg) colony-forming unit (CFU) and erythroid burst-forming unit (BFU-E)-derived precursor cells. ProMMP-9 levels were highest (> 400 ng/ml) at week 1 of normal LTMC, whereas proMMP-2, TIMP-1, TIMP-2 and TIMP-3 levels peaked (up to 1000 ng/ml) after the establishment of the adherent layer. In LTMC from AML patients, these patterns of secretion were reversed. Moreover, we found that after a 24 h incubation in serum-free media, normal CFU-GM-, BFU-E- and CFU-Meg-derived cells secreted proMMP-9 and CFU-F-derived cells proMMP-2, in contrast to cells from LTMC adherent layer which secreted both active and latent forms of MMP-2 and MMP-9 under serum-free conditions. However, when these adherent cells were incubated in 12·5% fetal calf or horse serum or complete LTMC growth media, active forms of MMP-2 and MMP-9 were no longer detectable, and TIMP levels increased. Hence, we concluded that (i) MMPs/TIMPs are secreted by normal human bone marrow haematopoietic and stromal cells and may play an important role in intercellular cross-talk in haematopoiesis; and (ii) only latent forms of MMPs are present under LTMC conditions, indicating that the specific media used for weekly re-feeding of LTMC can block activation of MMP-2 and MMP-9, maintaining the integrity of the stromal layer and supporting haematopoiesis in vitro.