Telomere maintenance in human B lymphocytes

Authors


Dr U. M. Martens, Freiburg University Medical Centre, Department for Haematology/Oncology, Hugstetterstr. 55, D-79106 Freiburg, Germany. E-mail: martens@ukl.uni-freiburg.de

Abstract

Summary. Telomere shortening has been causally linked to replicative senescence in human cells. To characterize telomere-length heterogeneity in peripheral blood cells of normal individuals, we analysed the mean length of telomeric repeat sequences in subpopulations of peripheral blood leucocytes, using fluorescence in situ hybridization and flow cytometry (flow-FISH). Although the telomere length of most haematopoietic subsets was within the same range, the mean telomere length was found to be 15% higher in B compared with T lymphocytes in adult peripheral blood. Whereas telomere loss with ageing corresponded to 33 base pairs (bp) per year in T cells, telomere shortening was slower in B cells, corresponding to 15 bp per year. Separation of adult B-lymphocyte subpopulations based on CD27 expression revealed that telomere length was almost 2 kb longer in CD19+CD27+ (memory) compared with CD19+CD27 (naive) cells. Furthermore, peripheral blood B cells were activated in vitro. Whereas B-cell activation with Staphylococcus aureus Cowan strain (SAC) did not increase telomere length, a striking telomere elongation was observed when cells were stimulated with SAC and interleukin 2 to induce plasma cell differentiation. Our observations support the concept that telomere dynamics in B cells are distinct from other haematopoietic cell lineages and that telomere elongation may play an essential role in the generation of long-term B memory cells.

Ancillary