• proteoglycan;
  • aggrecan;
  • arthritis;
  • Th1/Th2;
  • autoimmune;
  • isotype;
  • BALB/c

The central role of CD4+ T cells and the balance between T helper (Th) subpopulations in the pathogenesis of autoimmune diseases have been extensively studied. Proteoglycan (aggrecan)-induced arthritis (PGIA) is a murine model for rheumatoid arthritis (RA), which is characterized by a Th1 dominance at the onset of the disease. In addition to CD4+ T cells, antigen-presenting B cells and autoantibodies seem to play an important role in the development and regulation of PGIA. To identify proteoglycan-specific CD4+ T cell subsets and Th1- and Th2-supported antibody isotypes during the progression of PGIA, spleen cells of proteoglycan-immunized BALB/c mice were harvested at different times of immunization, and at different stages of the disease, and their cytokine production and antigen-specific antibody isotype profiles were determined by enzyme-linked immunospot (ELISPOT) assays. Both Th1 and Th2 cytokine-producing cells, with the predominance of IL-4/IL-5-secreting cells, were detected during the prearthritic stage, and a shift toward a Th1 dominance was observed at the time of onset of arthritis. Tissue homogenates of acutely inflamed joints contained significantly higher levels of interferon-gamma than IL-4. The prearthritic period and both the acute and chronic phases of joint inflammation were characterized by IgG1 dominance in the sera and this correlated with the number of IgG1-secreting B cells in the spleen. However, the ratio of autoreactive IgG1/IgG2a-secreting cells decreased in arthritic animals. These results indicate the activation and possible regulatory roles of both Th1 and Th2 subsets in the autoimmune process, with the necessity of a relative increase of autoreactive Th1 cells for the induction of joint inflammation.