• 1
    Yang D, Chertov O, Oppenheim JJ. The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 2001; 58: 97889.
  • 2
    Boman HG. Innate immunity and the normal microflora. Immunol Rev 2000; 173: 516.
  • 3
    Schroder JM. Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 1999; 56: 3246.
  • 4
    Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 1999; 11: 237.
  • 5
    Jones DE, Bevins CL. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 1992; 267: 2321625.
  • 6
    Jones DE, Bevins CL. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 1993; 315: 18792.
  • 7
    Porter EM, Liu L, Oren A et al. Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 1997; 65: 238995.
  • 8
    Quayle AJ, Porter EM, Nussbaum AA et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 1998; 152: 124758.
  • 9
    Svinarich DM, Wolf NA, Gomez R et al. Detection of human defensin 5 in reproductive tissues. Am J Obstet Gynecol 1997; 176: 4705.
  • 10
    Bensch KW, Raida M, Magert HJ et al. hBD-1: a novel β-defensin from human plasma. FEBS Lett 1995; 368: 3315.
  • 11
    Harder J, Bartels J, Christophers E et al. A peptide antibiotic from human skin. Nature 1997; 387: 861.
  • 12
    Bals R, Wang X, Wu Z et al. Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 1998; 102: 87480.
  • 13
    Valore EV, Park CH, Quayle AJ et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 1998; 101: 163342.
  • 14
    O'Neil DA, Porter EM, Elewaut D et al. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 1999; 163: 671824.
  • 15
    Frye M, Bargon J, Lembcke B et al. Differential expression of human alpha- and beta-defensins mRNA in gastrointestinal epithelia. Eur J Clin Invest 2000; 30: 695701.
  • 16
    Geyer G. Lysozyme in Paneth cell secretions. Acta Histochem 1973; 45: 12632.
  • 17
    Ghoos Y, Vantrappen G. The cytochemical localization of lysozyme in Paneth cell granules. Histochem J 1971; 3: 1758.
  • 18
    Mason DY, Taylor CR. The distribution of muramidase (lysozyme) in human tissues. J Clin Pathol 1975; 28: 12432.
  • 19
    O'Neil DA, Cole SP, Martin-Porter E et al. Regulation of human β-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infect Immun 2000; 68: 54125.
  • 20
    Becker MN, Diamond G, Verghese MW et al. CD14-dependent lipopolysaccharide-induced β-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 2000; 275: 297316.
  • 21
    Singh PK, Jia HP, Wiles K et al. Production of β-defensins by human airway epithelia. Proc Natl Acad Sci USA 1998; 95: 149616.
  • 22
    Mathews M, Jia HP, Guthmiller JM et al. Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect Immun 1999; 67: 27405.
  • 23
    Liu L, Wang L, Jia HP et al. Structure and mapping of the human β-defensin HBD-2 gene and its expression at sites of inflammation. Gene 1998; 222: 23744.
  • 24
    Harder J, Meyer-Hoffert U, Teran LM et al. Mucoid Pseudomonas aeruginosa, TNF-α, and IL-1β, but not IL-6, induce human β-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 2000; 22: 71421.
  • 25
    Harder J, Bartels J, Christophers E et al. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276: 570713.
  • 26
    Garcia JR, Krause A, Schulz S et al. Human β-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 2001; 15: 181921.
  • 27
    Cunliffe RN, Rose FR, Keyte J et al. Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 2001; 48: 17685.
  • 28
    Lundqvist C, Hammarström ML, Athlin L et al. Isolation of functionally active intraepithelial lymphocytes and enterocytes from human small and large intestine. J Immunol Meth 1992; 152: 25363.
  • 29
    Lundqvist C, Melgar S, Yeung MMW et al. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J Immunol 1996; 157: 192634.
  • 30
    Ishii S, Steele G Jr, Ford R et al. Normal colonic epithelium adheres to carcinoembryonic antigen and type IV collagen. Gastroenterology 1994; 106: 124250.
  • 31
    Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 1569.
  • 32
    Alberts B. Molecular biology of the cell, 3rd edn. New York: Garland. Publications, 1994.
  • 33
    Shires J, Theodoridis E, Hayday AC. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 2001; 15: 41934.
  • 34
    Symonds DA. Paneth cell metaplasia in diseases of the colon and rectum. Arch Pathol 1974; 97: 3437.
  • 35
    Lenardo MJ, Baltimore D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989; 58: 2279.
  • 36
    Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest 2001; 107: 711.
  • 37
    Naumann M. Nuclear factor-κ B activation and innate immune response in microbial pathogen infection. Biochem Pharmacol 2000; 60: 110914.
  • 38
    Jobin C, Sartor RB. The I-κ B/NF-κ B system: a key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol 2000; 278: C45162.
  • 39
    Cario E, Rosenberg IM, Brandwein SL et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000; 164: 96672.
  • 40
    Fusunyan RD, Nanthakumar NN, Baldeon ME et al. Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res 2001; 49: 58993.
  • 41
    Sierro F, Dubois B, Coste A et al. Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci USA 2001; 98: 137227.
  • 42
    Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68: 70107.
  • 43
    Rhodes JM. Unifying hypothesis for inflammatory bowel disease and associated colon cancer: sticking the pieces together with sugar. Lancet 1996; 347: 404.
  • 44
    Schultsz C, Van Den Berg FM, Ten Kate FW et al. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 1999; 117: 108997.
  • 45
    Hammarström S, Baranov V. Is there a role for CEA in innate immunity in the colon? Trends Microbiol 2001; 9: 11925.
  • 46
    Lehrer RI, Lichtenstein AK, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Ann Rev Immunol 1993; 11: 10528.
  • 47
    Merlin D, Yue G, Lencer WI et al. Cryptdin-3 induces novel apical conductance (s) in Cl secretory, including cystic fibrosis, epithelia. Am J Physiol Cell Physiol 2001; 280: C296302.
  • 48
    Yeung MMW, Melgar S, Baranov V et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-γδ expression. Gut 2000; 47: 21527.