• 1
    Yewdell JT, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Ann Rev Immunol 1999; 17: 5188.
  • 2
    Messaoudi I, Patiño JAG, Dyall R, LeMaoult J, Nikolich-Zugich J. Direct link between mhc polymorfism, T cell avidity, and diversity in immune defence. Science 2002; 298: 1797800.
  • 3
    Rooney CM, Smith CA, Ng CYC et al. Use of gene-modified virus-specific T-lymphocytes to control Epstein–Barr virus-related lymphoproliferation. Lancet 1995; 345: 913.
  • 4
    Roskrow MA, Suzuki N, Gan YJ et al. Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood 1998; 91: 292534.
  • 5
    Khanna R, Bell S, Sherritt M et al. Activation and adoptive transfer of Epstein–Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci 1999; 96: 103916.
  • 6
    Bharadwaj M, Moss DJ. Epstein–Barr virus vaccine: a cytotoxic T-cell-based approach. Expert Rev Vaccines 2002; 1: 46776.
  • 7
    Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein–Barr virus-associated diseases. Ann Rev Microbiol 2000; 54: 1948.
  • 8
    Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein–Barr virus infection. J Exp Med 2002; 195: 893905.
  • 9
    Davenport MP, Fazou C, McMichael AJ, Callan MFC. Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J Immunol 2002; 168: 330917.
  • 10
    Catalina MD, Sullivan JL, Bak KR, Luzuriaga K. Differential evolution and stability of epitope-specific CD8+ T cell responses in EBV infection. J Immunol 2001; 167: 44507.
  • 11
    Annels NE, Callan MFC, Tan L, Rickinson AB. Changing patterns of dominant RCR usage with maturation of an EBV-specific cytotoxic T cell response. J Immunol 2000; 165: 483141.
  • 12
    Steven NM, Annels NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB. Immediate early and early lytic cycle proteins are frequenct targets of the Epstein–Barr virus-induced cytotosic T cell response. J Exp Med 1997; 185: 160517.
  • 13
    Bharadwaj M, Burrows SR, Burrows JM, Moss DJ, Catalina M, Khanna R. Longitudinal dynamics of antigen-specific CD8 (+) cytotoxic T lymphocytes following primary Epstein–Barr virus infection. Blood 2001; 98: 25889.
  • 14
    Callan MFC, Tan L, Annels N et al. Direct visualization of antigen-specific CD8 (+) T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 1998; 187: 1395402.
  • 15
    Tan LC, Gudgeon N, Annels NE et al. A re-evaluation of the frequency of CD8 (+) T cells specific for EBV in healthy virus carriers. J Immunol 1999; 162: 182735.
  • 16
    Dyment DA, Sadnovich AD, Ebers GC. Genetics of multiple sclerosis. Hum Mol Genet 1997; 6: 16938.
  • 17
    Gale CR, Martyn CN. Migrant studies in multiple sclerosis. Prog Neurobiol 1995; 47: 42548.
  • 18
    Haahr S, Höllsberg P. The ability of candidate viruses to explain epidemiological findings in multiple sclerosis. In: HommesOR, WekerleH, ClanetM, eds Genes and viruses in multiple sclerosis. Amsterdam: Elsevier Science BV, 2001:16384.
  • 19
    Ascherio A, Munger KL, Lennette ET et al. Epstein–Barr virus antibodies and risk of multiple sclerosis − a prospective study. JAMA 2001; 286: 30838.
  • 20
    Haahr S, Koch-Henriksen N, Møller-Larsen A, Eriksen LS, Andersen HMK. Increased risk of multiple sclerosis after late Epstein–Barr virus infection: a historical prospective study. Multiple Sclerosis 1995; 1: 737.
  • 21
    Bech E, Lycke J, Gadeberg P et al. A randomized, double-blind, placebo-controlled MRI study of anti-herpes virus therapy in MS. Neurology 2002; 58: 316.
  • 22
    Burrows SR, Gardner J, Khanna R et al. Five new cytotoxic T cell epitopes identified within Epstein–Barr virus nuclear antigen 3. J Gen Virol 1993; 75: 248993.
  • 23
    Kerr BM, Kienzle N, Burrows JM et al. Identification of type B-specific and cross-reactive cytotoxic T-lymphocyte responses to Epstein–Barr virus. J Virol 1996; 70: 885864.
  • 24
    Lee SP, Thomas WA, Murray RJ et al. HLA-A2.1-restricted cytotoxic T cells recognizing a range of Epstein–Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 1993; 67: 742835.
  • 25
    Scotet E, DavidAmeline J, Peyrat MA et al. T cell response to Epstein–Barr virus transactivators in chronic rheumatoid arthritis. J Exp Med 1996; 184: 1791800.
  • 26
    Hill A, Worth A, Elliott S et al. Characterization of two Epstein–Barr virus epitopes restricted by HLA-B7. Eur J Immunol 1995; 25: 1824.
  • 27
    Nanan R, Carstens C, Kreth HW. Demonstration of virus-specific CD8 (+) memory T cells in measles-seropositive individuals by in vitro peptide stimulation. Clin Exp Immunol 1995; 102: 405.
  • 28
    Solache A, Morgan CL, Dodi AI et al. Identification of three HLA-A*0201-restricted cytotosic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol 1999; 163: 55128.
  • 29
    Kern F, Surel IP, Faulhaber N et al. Target structures of the CD8 (+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 1999; 73: 817984.
  • 30
    Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 1408.
  • 31
    Brehm MA, Pinto AK, Daniels KA, Schneck JP, Welsh RM, Selin LK. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat Immunol 2002; 3: 62734.
  • 32
    Wandinger KP, Jabs W, Siekhaus A et al. Association between clinical disease activity and Epstein–Barr virus reactivation in MS. Neurology 2000; 55: 17884.
  • 33
    Fraser KB, Haire M, Millar JHD, McCrea S. Increased tendency to spontaneous in vitro lymphocyte-transformation in clinically active multiple sclerosis. Lancet 1979; 2: 7157.
  • 34
    Munch M, Møller-Larsen A, Christensen T, Morling N, Hansen HJ, Haahr S. B-lymphoblastoid cell-lines from multiple sclerosis patients and a healthy control producing a putative new human retrovirus and Epstein–Barr virus. Multiple Sclerosis 1995; 1: 7881.
  • 35
    Shevach EM. CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002; 2: 389400.
  • 36
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25 (high) regulatory cells in human peripheral blood. J Immunol 2001; 167: 124553.
  • 37
    Welsh RM, Selin LK. No one is naïve: the significance of heterologous T-cell immunity. Nat Rev Immunol 2002; 2: 41726.
  • 38
    Shimojo N, Maloy WL, Anderson RW, Biddison WE, Coligan JE. Specificity of peptide binding by the HLA-A2.1 molecule. J Immunol 1989; 143: 293947.
  • 39
    Wedemeyer H, Mizukoshi E, Davis AR, Bennink JR, Rehermann B. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J Virol 2001; 75: 11392400.
  • 40
    Kim SK, Brehm MA, Welsh RM, Selin LK. Dynamics of memory T cell proliferation under conditions of heterologous immunity and bystander stimulation. J Immunol 2002; 169: 908.
  • 41
    Misko IS, Cross SM, Khanna R et al. Crossreactive recognition of viral, self, and bacterial peptide ligands by human class I-restricted cytotoxic T lymphocyte clonotypes: implications for molecular mimicry in autoimmune disease. Proc Natl Acad Sci USA 1999; 96: 227984.
  • 42
    Wucherpfennig KW, Strominger JL. Molecular mimicry in T-cell-mediated autoimmunity − viral peptides activate human T-cell clones specific for myelin basic protein. Cell 1995; 80: 695705.