• 1
    Wildin RS, Smyk-Pearson SK, Filipovich AH. Clinical and molecular features of the immuno-dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 2002; 39: 5375.
  • 2
    Baud O, Goulet O, Canioni D et al. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X Linked Syndrome (IPEX) by allogeneic bone marrow transplantation. N Engl J Med 2001; 344: 175862.
  • 3
    Tommasini A, Ferrari S, Moratto D et al. X-chromosome inactivation analysis in a female carrier of FOXP3 mutation. Clin Exp Immunol 2002; 130: 12730.
  • 4
    Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27: 1820.
  • 5
    Chatila TA, Blaeser F, Ho N et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity–allergic disregulation syndrome. J Clin Invest 2000; 106: R7581.
  • 6
    Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X–linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 201.
  • 7
    Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 6873.
  • 8
    Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991; 138: 137987.
  • 9
    Clark LB, Appleby MW, Brunkow ME et al. Cellular and molecular characterization of the scurfy mouse mutant. J Immunol 1999; 162: 254654.
  • 10
    Kanangat S, Blair P, Reddy R et al. Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur J Immunol 1996; 26: 1615.
  • 11
    Godfrey VL, Rouse BT, Wilkinson JE. Transplantation of T cell-mediated, lymphoreticular disease from the scurfy (sf) mouse. Am J Pathol 1994; 145: 2816.
  • 12
    Godfrey VL, Wilkinson JE, Rinchik EM et al. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci USA 1991; 88: 552832.
  • 13
    Blair PJ, Bultman SJ, Haas JC et al. CD4+CD8- T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J Immunol 1994; 153: 376474.
  • 14
    Schubert LA, Jeffery E, Zhang Y et al. Scurfin (foxp3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 2001; 276: 376729.
  • 15
    Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 1997; 7: 88595.
  • 16
    Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995; 270: 9858.
  • 17
    Tivol EA, Borriello F, Schweitzer AN et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3: 5417.
  • 18
    Willerford DM, Chen J, Ferry JA et al. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3: 52130.
  • 19
    Suzuki H, Kundig TM, Furlonger C et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995; 268: 14726.
  • 20
    Suzuki H, Zhou YW, Kato M et al. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999; 190: 156171.
  • 21
    Pontoux C, Banz A, Papiernik M. Natural CD4 CD25 (+) regulatory T cells control the burst of superantigen-induced cytokine production: the role of IL-10. Int Immunol 2002; 14: 2339.
  • 22
    Malek TR, YuA, Vincek V et al. Control of autoimmunity by CD4+ CD25+ regulatory T cells depends on thymic IL-2 receptor signalling. In: Bluestone JA, Abbas AK, Goodrow CC. Mechanisms and Applications of Immune Tolerance, Keystone Symposia, Steamboat Springs, CO, USA. 3–9 April 2002, Abstract 328.
  • 23
    Bachmann MF, Koehler G, Ecabert B et al. Cutting edge. Lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999; 163: 112831.
  • 24
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor foxp3. Science 2003; 299: 105761.
  • 25
    Patel DD. Escape from tolerance in the human X-linked autoimmunity–allergic disregulation syndrome and the Scurfy mouse. J Clin Invest 2001; 107: 1557.
  • 26
    Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4 (+) CD25 (+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194: 62944.
  • 27
    Shevach EM, McHugh RS, Piccirillo CA et al. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol Rev 2001; 182: 5867.
  • 28
    Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells. their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 1832.
  • 29
    Khattri R, Kasprowicz D, Cox T et al. The amount of scurfin protein determines peripheral T cell number and responsiveness. J Immunol 2001; 167: 631220.
  • 30
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 3306.
  • 31
    Khattri R, Cox T, Yasayko SA et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 33742.