The consequences of larval aggregation in the butterfly Chlosyne lacinia


Stanley H. Faeth Arizona State University, Department of Biology, Tempe AZ 85287–1501,


1. Females of Chlosyne lacinia (Geyer) (Lepidoptera: Nymphalidae, Melitaenae), the bordered patch butterfly, clump eggs in a few large clusters on their host plant, Helianthus annuus. Resulting larvae form sibling aggregations to at least the third instar.

2. The effect of group size on survival and development of C. lacinia larvae was tested experimentally in the field. Larvae developed faster and survived better in larger groups.

3. The effects of various predator guilds (ground-dwelling arthropods, aerial arthropods and avian predators) on survival of larvae was then tested while controlling group size. Ground-dwelling arthropods, mainly fire ants Solenopsis xyloni, reduced larval survival greatly but other solitary invertebrate and avian predators did not alter survival. Group defences and aposematism of C. lacinia larvae are probably ineffective against predatory ants that attack en masse and recruit other colony members.

4. In laboratory experiments, two possible mechanisms underlying faster development of larvae in larger groups were tested: (i) overcoming the physical toughness of host plant leaves, and (ii) social stimulus to feed. Results support the physical toughness hypothesis but not the social stimulus hypothesis.

5. Feeding in large groups by C. lacinia larvae confers multiple advantages, including protection from solitary predators and increased feeding efficiency because grouped, early-instar larvae can initiate feeding wounds on tough sunflower leaves. These advantages of larval gregariousness, coupled with reduced desiccation at the egg stage, apparently outweigh disadvantages of aggregation, such as interference and exploitative competition among larvae.