Impact of diet quality on demographic attributes in adult grasshoppers and the nitrogen limitation hypothesis

Authors


ANTHONY JOERN University of Nebraska-Lincoln, Lincoln, NE 68588–0118, U.S.A. tonyj@niko.unl.edu

Abstract

1. Various formulations of the nutrient stress hypothesis predict that insect herbivore populations will respond positively to increased nutrient quality of host plants, especially dietary nitrogen. Survival and reproduction by adult females of two grasshopper species [Acrididae;Melanoplus sanguinipes (Fabricius) and Phoetaliotes nebrascensis (Thomas)] were evaluated in response to defined diets that varied factorially in both total nitrogen (1–7%) and total soluble carbohydrate (4.3–26.7%). These grasshopper species coexist naturally but are typically shifted phenologically so that specific developmental stages normally encounter host plants of different nutritional quality under natural conditions.

2. Demographic responses by adult females of both species varied according to diet quality, but not in the same fashion. Diet quality affected survival significantly in P. nebrascensis but not in M. sanguinipes. Survival in P. nebrascensis was greatest on diets containing the lowest nitrogen concentrations; carbohydrate level had no effect.

3. Diet quality influenced reproduction significantly in both species. Egg production rate (eggs/day) in M. sanguinipes exhibited a negative linear response to increased carbohydrate, coupled with a significant quadratic response to nitrogen that reached a maximum at an intermediate level of about 4% total N. A significant quadratic response to total N for pod production rate (indicating the timing of reproduction) was also observed. Clutch size in M. sanguinipes exhibited a negative relationship with total carbohydrate in the diet, but no response to nitrogen. No interaction was observed between nitrogen and carbohydrate levels. For P. nebrascensis, response to diet quality was much weaker, with only a suggestive maximum at 4% total-N for both egg production rate (eggs/day) and clutch size (eggs/pod) and a suggestive linear response for pod production rate as carbohydrate level increased. Female body weight did not contribute to any reproductive response as a covariate variable.

4. Combined with a similar, previous analysis of demographic responses by the grass-feeding grasshopper, Ageneotettix deorum, these results challenge the ability to draw generalizations about host plant nutritional quality and grasshopper demographic responses. These three grasshopper species respond quite differently to defined diets that vary in total nitrogen and carbohydrate levels. Thus, although host plant quality can contribute significantly to grasshopper population responses, a uniform explanation is not likely.

Ancillary