Anomalous conditions in the south-eastern Bering Sea 1997: linkages among climate, weather, ocean, and Biology


  • This series of manuscripts on recent events in the Bering Sea reflects Professor Michael Mullin’s influence as Editor-in-Chief. He believed that ecosystem understanding required an integrative approach – that the whole presented in an integrated form would be more powerful than the sum of the individual parts. Thank you Michael for your support and teachings.



In 1997, the Bering Sea ecosystem, a productive, high-latitude marginal sea, demonstrated that it responds on very short time scales to atmospheric anomalies. That year, a combination of atmospheric mechanisms produced notable summer weather anomalies over the eastern Bering Sea. Calm winds, clear skies, and warm air temperatures resulted in a larger-than-normal transfer of heat to surface waters and the establishment of a shallow mixed layer. In spring, significant new production occurred below the shallow pycnocline over the Middle Shelf, depleting the subpycnocline nutrient reservoir that normally exists during summer. Following the depletion of nitrate and silicate from the system, a sustained (≥ 4 months) bloom of coccolithophores (Emiliania huxleyi) was observed – a phenomenon not previously documented in this region. Summer Middle Shelf Domain copepod concentrations were higher for some species in 1997 than in the early 1980s. Warmer surface water and lack of wind mixing also changed the basic distribution of hydrographic regimes on the south-eastern shelf and altered the strength and position of fronts or transition zones where apex predators seek elevated food concentrations. The Inner Front was well inshore of its normal position, and adult euphausiids (the primary prey of short-tailed shearwaters, Puffinus tenuirostris) were unavailable at, and shoreward of, the front in autumn. High shearwater mortality rates followed the period of low euphausiid availability. Some, but not all, of these anomalous conditions re-occurred in 1998. These observations are another demonstration that the structure and function of marine ecosystems are intimately tied to forcing from the atmosphere. Alteration of climatological forcing functions, expressed as weather, can be expected to have large impacts on this ecosystem and its natural resources.