• 1
    Aussenac, G. (1975) Couverts forestiers et facteurs du climat: leurs interactions, conséquences écophysiologiques chez quelques résineux. Thèse d′État, Université de Nancy, Nancy.
  • 2
    Bernays, E.A. (1981) Plant tannins and insect herbivores: an appraisal. Ecological Entomology 12, 353360.
  • 3
    Bernays, E.A., Driver, G.C., Bilgener, M. (1989) Herbivores and plant tannins. Advances in Ecological Research 12, 263302.
  • 4
    Burkett, B.N. & Schneiderman, H.A. (1974) Roles of oxygen and carbon dioxide in the control of spiracular function in Cecropia pupae. Biological Bulletin 12, 274293.
  • 5
    Buse, A. & Good, J.E.G. (1996) Synchronization of larval emergence in winter moth (Operophtera brumata L.) and budburst in pedunculate oak (Quercus robur L.) under simulated climate change. Ecological Entomology 12, 335343.
  • 6
    Clancey, M.J. & Wilson, R.K. (1986) Fibre, modified acid detergent, in plant material. The Analysis of Agricultural Materials: a Manual on Analytical Methods used by the Agricultural Development and Advisory Service, 2nd edn, pp. 82–83. HMSO, London.
  • 7
    Cockfield, S.D. (1988) Relative availability of nitrogen in host plants of invertebrate herbivores: three possible nutritional and physiological definitions. Oecologia 12, 9194.
  • 8
    Dury, S.J., Good, J.E.G., Perrins, C.M., Buse, A., Kaye, T. (1998) The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology 12, 5562.
  • 9
    Fajer, E.D., Bowers, M.D., Bazzaz, F.A. (1989) The effects of enriched carbon dioxide atmospheres on plant–insect herbivore interactions. Science 12, 11981200.
  • 10
    Feeny, P.P. (1968) Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. Journal of Insect Physiology 12, 805817.
  • 11
    Feeny, P. (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding in winter moth caterpillars. Ecology 12, 565581.
  • 12
    Felton, G.W. (1996) Nutritive quality of plant protein: sources of variation and insect herbivore responses. Archives of Insect Biochemistry and Physiology 12, 107130.DOI: 10.1002/(SICI)1520-6327(1996)32:1<107::AID-ARCH7>3.0.CO;2-X
  • 13
    Hilbert, D.W. (1995) Growth-based approach to modeling the developmental rate of arthropods. Environmental Entomology 12, 771778.
  • 14
    Hilbert, D.W., Larigauderie, A., Reynolds, J.F. (1991) The influence of carbon dioxide and daily photon-flux density on optimal leaf nitrogen concentration and root:shoot ratio. Annals of Botany 12, 365376.
  • 15
    Hochuli, D.F. (1996) The ecology of plant/insect interactions: implications of digestive strategy for feeding by phytophagous insects. Oikos 12, 133141.
  • 16
    House, H.L. (1969) Effects of different proportions of nutrients on insects. Entomologia Experimentalis et Applicata 12, 651669.
  • 17
    Hoyle, G. (1960) The action of carbon dioxide gas on insect spiracular muscle. Journal of Insect Physiology 12, 6379.
  • 18
    IPCC (1996) Climate change 1995. The Science of Climate Change (eds J. T. Houghton, L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell). Cambridge University Press, Cambridge.
  • 19
    Kerslake, J.E., Kruuk, L.E.B., Hartley, S.E., Woodin, S.J. (1996) Winter moth (Operophtera brumata (Lepidoptera: Geometridae)) outbreaks on Scottish heather moorlands: effects of host plant and parasitoids on larval survival and development. Bulletin of Entomological Research 12, 155164.
  • 20
    Kinney, K.K., Lindroth, R.L., Jung, S.M., Nordheim, E.V. (1997) Effects of CO2 and NO3 availability on deciduous trees: phytochemistry and insect performance. Ecology 12, 215 230.
  • 21
    Kirsten, K. & Topp, W. (1991) Acceptance of willow-species for the development of the winter moth, Operophtera brumata (Lep., Geometridae). Journal of Applied Entomology 12, 457468.
  • 22
    Kytö, M., Niemelä, P., Larsson, S. (1996) Insects on trees: population and individual response to fertilization. Oikos 12, 148159.
  • 23
    Lambers, H. (1993) Rising CO2, secondary plant metabolism, plant–herbivore interactions and litter decomposition. Vegetatio 12, 263271.
  • 24
    Lincoln, D.E. (1993) The influence of plant carbon dioxide and nutrient supply on susceptibility to insect herbivores. Vegetatio 12, 273280.
  • 25
    Lincoln, D.E., Sionit, N., Strain, B.R. (1984) Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environmental Entomology 12, 15271530.
  • 26
    Lindroth, R.L., Kinney, K.K., Platz, C.L. (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 12, 763777.
  • 27
    Lloyd, J. & Farquhar, G.D. (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. 1. General principles and forest ecosystems. Functional Ecology 12, 4 32.
  • 28
    Mattson, W.J. (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 12, 119161.
  • 29
    Noordwijk A.J. van,. McCleery , R.H. & Perrins, C.M. (1995) Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. Journal of Animal Ecology 12, 451458.
  • 30
    Osbrink, W.C., Trumble, J.T., Wagner, R.E. (1987) Host suitability of Phaseolus lunata for Trichoplusia ni (Lepidoptera, Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology 12, 639644.
  • 31
    Pandey, R.K. (1992) Decline in proteins and increase in fibres with ageing in oak foliage. Comparative Physiological Ecology 12, 5456.
  • 32
    Perrins, C.M. (1965) Population fluctuations and clutch-size in the great tit, Parus major L. Journal of Animal Ecology 12, 601647.
  • 33
    Perrins, C.M. (1991) Tits and their caterpillar food supply. Ibis 12 (5), 4954.
  • 34
    Precht, H., Laudien, H., Havsteen, B. (1973) The normal temperature range. Temperature and Life (eds H. Precht, J. Christopherson, H. Hansel & W. Laudien), pp. 302–399. Springer-Verlag, Berlin.
  • 35
    Rafarel, C.R., Ashenden, T.W., Roberts, T.M. (1995) An improved Solardome system for exposing plants to elevated CO2 and temperature. New Phytologist 12, 481490.
  • 36
    Reynolds, B. & Edwards, A. (1995) Factors influencing dissolved nitrogen concentrations and loadings in upland streams of the UK. Agricultural Water Management 12, 181202.DOI: 10.1016/0378-3774(95)01146-A
  • 37
    Rogers, H.H., Runion, G.B., Krupa, S.V. (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizophere. Environmental Pollution 12, 155189.
  • 38
    Rossiter, M.C., Coxfoster, D.L., Briggs, M.A. (1993) Initiation of maternal effects in Lymantria dispar: genetic and ecological components of egg provisioning. Journal of Evolutionary Biology 12, 577589.
  • 39
    Schweitzer, D.F. (1979) Effects of foliage age on body weight and survival in larvae of the tribe Lithophanini (Lepidoptera: Noctuidae). Oikos 12, 403408.
  • 40
    Scriber, J.M. (1984) Host-plant suitability. Chemical Ecology of Insects (eds W. J. Ball & R. T. Carde), pp. 159–202. Chapman & Hall, London.
  • 41
    Scriber, J.M. & Slansky, F. (1981) The nutritional ecology of immature insects. Annual Review of Entomology 12, 183211.
  • 42
    Slansky, F. (1993) Nutritional ecology: the fundamental quest for nutrients. Caterpillars: Ecological and Evolutionary Constraints on Foraging (eds N. E. Stamp & T. M. Casey), pp. 29–91. Chapman & Hall, New York.
  • 43
    Slansky, F. & Wheeler, G.S. (1992) Caterpillar’s compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomologia Experimentalis et Applicata 12, 171186.
  • 44
    Stamp, N.E. (1993) A temperate region view of the interaction of temperature, food quality, and predators on caterpillar foraging. Caterpillars: Ecological and Evolutionary Constraints on Foraging (eds N. E. Stamp & T. M. Casey), pp. 478–508. Chapman & Hall, New York.
  • 45
    Stamp, N.E. & Bowers, M.D. (1990) Variation in food quality and temperature constrain foraging of gregarious caterpillars. Ecology 12, 10311039.
  • 46
    Stamp, N.E. & Bowers, M.D. (1994) Effect of temperature and leaf age on growth versus moulting time of a generalist caterpillar fed plantain (Plantago lanceolata). Ecological Entomology 12, 199206.
  • 47
    Traw, M.B., Lindroth, R.L., Bazzaz, F.A. (1996) Decline in gypsy moth (Lymantria dispar) performance in an elevated CO2 atmosphere depends upon host plant species. Oecologia 12, 113120.
  • 48
    Varley, G.C., Gradwell, G.R., Hassell, M.P. (1973) Insect Population Ecology: an Analytical Approach. Blackwell, Oxford.
  • 49
    Wagner, T.I., Olson, R.L., Willers, J.L. (1991) Modeling arthropod development time. Journal of Agricultural Entomology 12, 251270.
  • 50
    Watt, A.D., Whittaker, J.B., Docherty, M., Brooks, G., Lindsay, E., Salt, D.T. (1995) The impact of elevated atmospheric CO2 on insect herbivores. Insects in a Changing Environment (eds R. Harrington & N. E. Stork), pp. 197–217. Academic Press, London.
  • 51
    Woodward, F.I. (1992) Tansley review no. 41. Predicting plant responses to global environmental change. New Phytologist 12, 239251.