SEARCH

SEARCH BY CITATION

References

  • 1
    Allen, L.H. Jr & Lemon, E.R. (1976) Carbon dioxide exchange and turbulence in a Costa Rican tropical rain forest. Vegetation and the Atmosphere, vol. 2 (ed. J. L. Monteith), pp. 265–308. Academic Press, London.
  • 2
    Arnone III, J.A. (1996) Predicting responses of tropical plant communities to elevated CO2: lessons from experiments with model ecosystems. Carbon Dioxide, Populations, and Communities (eds Ch. Körner & F. A. Bazzaz), pp. 101–121. Academic Press, San Diego.
  • 3
    Arnone III, J.A. & Körner, Ch. (1993) Influence of elevated CO2 on canopy development and red:far-red ratios in two-storied stands of Ricinus communis. Oecologia 12, 510515.
  • 4
    Arnone III, J.A. & Körner, Ch. (1995) Soil and biomass carbon pools in model communities of tropical plants under elevated CO2. Oecologia 12, 6171.
  • 5
    Baumgartner, A. (1967) Ecological significance of the vertical energy distribution in plant stands. Resources Naturelles 12, 367374.
  • 6
    Bazzaz, F.A. & Miao, S.L. (1993) Successional status, seed size, and responses of tree seedlings to CO2, light, and nutrients. Ecology 12, 104112.
  • 7
    Bazzaz, F.A. & Williams, W.E. (1991) Atmospheric CO2 concentrations within a mixed forest: implications for seedling growth. Ecology 12, 1216.
  • 8
    Bigelow, S.W. (1993) Leaf nutrients in relation to stature and life form in tropical rain forest. Journal of Vegetation Science 12, 401408.
  • 9
    Brown, S. & Lugo, A.E. (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 12, 161187.
  • 10
    Buchmann, N., Kao, W.Y., Ehleringer, J.R. (1996) Carbon dioxide concentration within forest canopies: variation with time, stand structure, and vegetation type. Global Change Biology 12, 421432.
  • 11
    Denslow, J.S., Schultz, J.C., Vitousek, P.M., Strain, B.R. (1990) Growth responses of tropical shrubs to treefall gap environments. Ecology 12, 165179.
  • 12
    Dietrich, W.E., Windsor, D.M., Dunne, T. (1992) Geología, clima e hidrología de la isla Barro Colorado. Ecología de un Bosque Tropical (eds E. G. Leigh Jr, A. S. Rand & D. M. Windsor), pp. 25–51. Tropical Research Institute, Balboa, Panama.
  • 13
    Drake, B.G. & Leadley, P.W. (1991) Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO2. Plant, Cell and Environment 12, 853860.
  • 14
    Elias, P., Kratochvilova, I., Janous, D., Marek, M., Masarovicova, E. (1989) Stand microclimate and physiological activity of tree leaves in an oak-hornbeam forest. I. Stand microclimate. Trees 12, 227233.
  • 15
    Gifford, R.M. (1992) Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications for the global carbon cycle. Advances in Bioclimatology 12, 2458.
  • 16
    Grace, J., Lloyd. J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I., Gash, J. (1995) Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992–93. Science 12, 778780.
  • 17
    Hättenschwiler, S. & Körner, Ch. (1996) Effects of elevated CO2 and increased nitrogen deposition on photosynthesis and growth of understory plants in spruce model ecosystems. Oecologia 12, 172180.
  • 18
    Hättenschwiler, S., Miglietta, F., Raschi, A., Körner, Ch. (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest response? Global Change Biology 12, 463471.
  • 19
    Hirschel, G., Körner, Ch., Arnone III, J.A. (1997) Will rising CO2 affect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 12, 387392.
  • 20
    Holdridge, L.R., Grenke, W.C., Hatheway, W.H., Liang, T., Tosi, J.A. (1971) Forest Environments in Tropical Life Zones: a Pilot Study. Pergamon Press, Oxford.
  • 21
    Huber, O. (1978) Light compensation point of vascular plants of a tropical cloud forest and an ecological interpretation. Photosynthetica 12, 382390.
  • 22
    Kira, T. & Yoda, K. (1989) Vertical stratification in microclimate. Tropical Rain Forest Ecosystems (eds H. Lieth & M. J. A. Werger), pp. 55–71. Elsevier Science Publishing, Amsterdam.
  • 23
    Koch, G.W. & Mooney, H.A. (1996) Response of terrestrial ecosystems to elevated CO2: a synthesis and summary. Carbon Dioxide and Terrestrial Ecosystems (eds G. W. Koch & H. A. Mooney), pp. 415–428. Academic Press, New York.
  • 24
    Körner, Ch. (1995) Biodiversity and CO2: global change is under way. GAIA 12, 234243.
  • 25
    Körner, Ch. (1998) Tropical forests in a CO2-rich world. Climatic Change 12, 297315.
  • 26
    Körner, Ch. & Arnone III, J.A. (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 12, 16721675.
  • 27
    Körner, Ch. & Bazzaz, F.A. (1996) Carbon Dioxide, Populations, and Communities. Academic Press, San Diego.
  • 28
    Körner, Ch. & Miglietta, F. (1994) Long term effects of naturally elevated CO2 on Mediterranean grassland and forest trees. Oecologia 12, 343351.
  • 29
    Küppers, M. & Schulze, E.D. (1985) An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange. Australian Journal of Plant Physiology 12, 513526.
  • 30
    Kursar, T.A. & Coley, P.D. (1991) Nitrogen content and expansion rate of young leaves of rain forest species: implications for herbivory. Biotropica 12, 141150.
  • 31
    Lloyd, J., Grace, J., Miranda, A.C., Meir, P., Wong, S.C., Miranda, H.S., Wright, I.R., Gash, J.H.C., McIntyre, J. (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell and Environment 12, 11291145.
  • 32
    Long, S.P. & Drake, B.G. (1991) Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge, Scirpus olneyi. Plant Physiology 12, 221226.
  • 33
    Lovelock, C., Kyllo, D., Winter, K. (1996) Growth response to vesicular–arbuscular mycorrhizae and elevated CO2 in seedlings of a tropical tree, Beilschmiedia pendula. Functional Ecology 12, 662667.
  • 34
    Medina, E., Montes, G., Cuevas, E., Rokzandic, Z. (1986) Profiles of CO2 concentration and ∂13C values in tropical rain forests of the upper Rio Negro Basin, Venezuela. Journal of Tropical Ecology 12, 207217.
  • 35
    Mitscherlich, G., Kern, K.G., Künstle, E. (1963) Untersuchungen über den Kohlensäuregehalt der Waldluft in Plenterwald und Fichtenreinbestand. Allgemeine Forst- und Jagd-Zeitung 12, 281290.
  • 36
    Mooney, H.A., Drake, B.G., Luxmoore, R.J., Oechel, W.C., Pitelka, L.F. (1991) Predicting ecosystem responses to elevated CO2 concentrations. BioScience 12, 96104.
  • 37
    Mulkey, S.S. (1986) Photosynthetic acclimation and water-use efficiency of three species of understory herbaceous bamboo (Gramineae) in Panama. Oecologia 12, 514519.
  • 38
    Neftel, A., Oescher, H., Staffelbach, T., Stauffer, B. (1988) CO2 record in the Byrd ice core 50,000–5,000 years BP. Nature 12, 609611.
  • 39
    Oberbauer, S.F., Strain, B.R., Fetcher, N. (1985) Effect of CO2 enrichment on seedling physiology and growth of two tropical tree species. Physiologia Plantarum 12, 352356.
  • 40
    Pearcy, R.W. (1987) Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environment. Functional Ecology 12, 169178.
  • 41
    Phillips, O.L. (1996) Long-term environmental change in tropical forests: increasing tree turnover. Environmental Conservation 12, 235248.
  • 42
    Phillips, O.L. & Gentry, A.H. (1994) Increasing turnover through time in tropical forests. Science 12, 954958.
  • 43
    Rawson, H.M. (1992) Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany 12, 473490.
  • 44
    Reekie, E.G. & Bazzaz, F.A. (1989) Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO2. Oecologia 12, 212222.
  • 45
    Schimper, A.F.W. & Von Faber, F.C. (1935) Pflanzengeographie auf physiologischer Grundlage. Gustav Fischer, Jena.
  • 46
    Valle, R., Mishoe, J.W., Campbell, W.J., Jones, J.W., Allen, L.H. (1985) Photosynthetic responses of ‘bragg’ soybean leaves adapted to different CO2 environments. Crop Science 12, 333339.
  • 47
    Van Schaik, C.P., Terborgh, J.W., Wright, S.J. (1993) The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics 12, 353377.
  • 48
    Whitehead, D., Hogan, K.P., Rogers, G.N.D., Byers, J.N., Hunt, J.E., McSeveny, T.M., Hollinger, D.Y., Dungan, R.J., Earl, W.B., Bourke, M.P. (1995) Performance of large open-top chambers for long-term field investigations of tree response to elevated carbon dioxide concentration. Journal of Biogeography 12, 307313.
  • 49
    Whitmore, T.C. (1990) An Introduction to Tropical Rain Forests. Clarendon Press, Oxford.
  • 50
    Wong, S.C. & Dunin, F.X. (1987) Photosynthesis and transpiration of trees in a eucalypt forest stand: CO2, light and humidity responses. Australian Journal of Plant Physiology 12, 619632.
  • 51
    Wright, S.J. (1991) Seasonal drought and the phenology of understory shrubs in a tropical moist forest. Ecology 12, 16431657.
  • 52
    Würth, M.K.R., Winter, K., Körner, Ch. (1998) Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecologia 12, 1825.
  • 53
    Ziska, L.H., Hogan, K.P., Smith, A.P., Drake, B.G. (1991) Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oecologia 12, 383389.