Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards

Authors


† Author to whom correspondence should be addressed. E-mail: rvdamme@uia.AC.BE

Summary

  • 1Relationships between morphology, bite force capacity, prey handling efficiency and trophic niche were explored in two sympatric species of lacertid lizards, Podarcis melisellensis (Braun 1877) and Lacerta oxycephala Duméril & Bibron 1839.
  • 2Head shape showed little variation, but head size (absolute and relative to snout–vent length, SVL) differed between species and sexes. Males have larger heads than females, both absolute and relative to their SVL. In absolute terms, male P. melisellensis have larger heads than male L. oxycephala, but the reverse case was true for the females. Relative to SVL, L. oxycephala have larger heads than P. melisellensis.
  • 3Bite force capacity was estimated by having the lizards bite on two metal plates, connected to a piezoelectric force transducer. Differences in maximal bite force between species and sexes paralleled differences in absolute head size. Differences in body size and head size explain the higher bite force of males (compared with females), but not the higher bite force of P. melisellensis (compared with L. oxycephala). Among individual lizards, bite force correlated with body size and head size.
  • 4Prey handling efficiency, estimated by the time and number of bites needed to subdue a cricket in experimental conditions, also showed intersexual and interspecific variation. This variation corresponded to the differences in maximal bite capacity, suggesting that bite force is a determining factor in prey handling. Among individual lizards, both estimates of handling efficiency correlated with maximal bite force capacity.
  • 5Faecal pellet analyses suggested that in field conditions, males of both sexes select larger and harder prey than females. There was no difference between the species. The proportion of hard-bodied and large-sized prey items found in a lizard's faeces correlated positively with its bite force capacity.
  • 6It is concluded that differences in head and body size, through their effect on bite force capacity, may affect prey selection, either directly, or via handling efficiency.

Ancillary