SEARCH

SEARCH BY CITATION

References

  • 1
    Adams, C.R. & Kamakaka, R.T. (1999) Chromatin assembly: biochemical identities and genetic redundancy. Curr. Opin. Genet. Dev. 9, 185 190.DOI: 10.1016/s0959-437x(99)80028-8
  • 2
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403 410.
  • 3
    Bando, M., Ijuin, S., Hasegawa, S., Horikoshi, M. (1997) The involvement of the histone fold motifs in the mutual interaction between human TAFII 80 and TAFII 22. J. Biochem. 121, 591 597.
  • 4
    Birck, C., Poch, O., Romier, C., et al (1998) Human TAF (II) 28 and TAF (II) 18 interact through a histone fold encoded by a typical evolutionary conserved motifs also found in the SPT3 family. Cell 94, 239 249.
  • 5
    Bortvin, A. & Winston, F. (1996) Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272, 1473 1476.
  • 6
    Brownell, J.E., Zhou, J., Ranalli, T., et al (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843 851.
  • 7
    Burley, S.K. & Roeder, R.G. (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769 799.
  • 8
    Cairns, B.R., Lorch, Y., Li, Y., et al (1996) RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249 1260.
  • 9
    Cavalli, G. & Paro, R. (1998) Chromo-domain proteins: linking chromatin structure to epigenetic regulation. Curr. Opin. Cell Biol. 10, 354 360.
  • 10
    Chen, H., Li, B., Workman, J.L. (1994) A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 13, 380 390.
  • 11
    Chen, H., Lin, R.J., Schiltz, R.L., et al (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569 580.
  • 12
    Cormack, B.P. & Struhl, K. (1992) The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells. Cell 69, 685 696.
  • 13
    Cormack, B.P. & Struhl, K. (1993) Regional codon randomization: defining a TATA-binding protein surface required for RNA polymerase III transcription. Science 262, 244 248.
  • 14
    Coté, J., Quinn, J., Workman, J.L., Peterson, C.L. (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53 60.
  • 15
    De Rubertis, F., Kadosh, D., Henchoz, S., et al (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589 591.
  • 16
    Dorer, D.R. & Henikoff, S. (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993 1002.
  • 17
    Durfee, T., Becherer, K., Chen, P.L., et al (1993) The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555 569.
  • 18
    Earnshaw, W.C., Honda, B.M., Laskey, R.A., Thomas, J.O. (1980) Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin. Cell 21, 373 383.
  • 19
    Eickbush, T.H. & Moudrianakis, E.N. (1978) The histone core complex: an octamer assembled by two sets of protein–protein interactions. Biochemistry 17, 4955 4964.
  • 20
    Ekwall, K., Olsson, T., Turner, B.M., Cranston, G., Allshire, R.C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021 1032.
  • 21
    Fourel, G., Revardel, E., Koering, C.E., Gilson, E. (1999) Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 18, 2522 2537.
  • 22
    Freeman, L., Kurumizaka, H., Wolffe, A. (1996) Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 12780 12785.
  • 23
    Fujii-Nakata, T., Ishimi, Y., Okuda, A., Kikuchi, A. (1992) Functional analysis of nucleosome assembly protein, NAP-I. The negatively charged COOH-terminal region is not necessary for the intrinsic assembly activity. J. Biol. Chem. 267, 20980 20986.
  • 24
    Gaillard, P.H., Martini, E.M., Kaufman, P.D., Stillman, B., Moustacchi, E., Almouzni, G. (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86, 887 896.
  • 25
    Grunstein, M. (1998) Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325 328.
  • 26
    Hecht, A., Strahl-Bolsinger, S., Grunstein, M. (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383, 92 96.
  • 27
    Hoffmann, A., Sinn, E., Yamamoto, T., et al (1990) Highly conserved core domain and unique N-terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346, 387 390.
  • 28
    Horikoshi, M., Carey, M.F., Kakidani, H., Roeder, R.G. (1988a) Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID–promoter interactions. Cell 54, 665 669.
  • 29
    Horikoshi, M., Hai, T., Lin, Y.S., Green, M.R., Roeder, R.G. (1988b) Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033 1042.
  • 30
    Horikoshi, M., Wang, C.K., Fujii, H., Cromlish, J.A., Weil, P.A., Roeder, R.G. (1989) Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature 341, 299 303.
  • 31
    Ishimi, Y., Hirosumi, J., Sato, W., et al (1984) Purification and initial characterization of a protein which facilitates assembly of nucleosome-like structure from mammalian cells. Eur. J. Biochem. 142, 431 439.
  • 32
    Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R., Kadonaga, J.T. (1997a) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145 155.
  • 33
    Ito, T., Tyler, J.K., Kadonaga, J.T. (1997b) Chromatin assembly factors: a dual function in nucleosome formation and mobilization? Genes Cells 2, 593 600.
  • 34
    Kadonaga, J.T. (1998) Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307 313.
  • 35
    Kamakaka, R.T. & Rine, J. (1998) Sir- and silencer-independent disruption of silencing in Saccharomyces by Sas10p. Genetics 149, 903 914.
  • 36
    Kaufman, P.D., Kobayashi, R., Stillman, B. (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11, 345 357.
  • 37
    Kawase, H., Okuwaki, M., Miyaji, M., et al (1996) NAP-I is a functional homologue of TAF-I that is required for replication and transcription of the adenovirus genome in a chromatin-like structure. Genes Cells 1, 1045 1056.
  • 38
    Kim, T.K., Hashimoto, S., Kelleher, R.J. 3rd, et al (1994) Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature 369, 252 255.
  • 39
    Kim, T.K. & Roeder, R.G. (1994) Involvement of the basic repeat domain of TATA-binding protein (TBP) in transcription by RNA polymerases I, II, and III. J. Biol. Chem. 269, 4891 4894.
  • 40
    Kimura, A. & Horikoshi, M. (1998) Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3, 789 800.
  • 41
    Kingston, R.E., Bunker, C.A., Imbalzano, A.N. (1996) Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10, 905 920.
  • 42
    Kioussis, D. & Festenstein, R. (1997) Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. Curr. Opin. Genet. Dev. 7, 614 619.
  • 43
    Kleff, S., Andrulis, E.D., Anderson, C.W., Sternglanz, R. (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270, 24674 24677.
  • 44
    Kleinschmidt, J.A. & Franke, W.W. (1982) Soluble acidic complexes containing histones H3 and H4 in nuclei of Xenopus laevis oocytes. Cell 29, 799 809.
  • 45
    Kleinschmidt, J.A. & Seiter, A. (1988) Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus leavis. EMBO J. 7, 1605 1614.
  • 46
    Kokubo, T., Gong, D.W., Wootton, J.C., Horikoshi, M., Roeder, R.G., Nakatani, Y. (1994) Molecular cloning of Drosophila TFIID subunits. Nature 367, 484 487.
  • 47
    Kornberg, R.D. (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184, 868 871.
  • 48
    Kornberg, R.D. & Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285 294.
  • 49
    Kornberg, R.D. & Thomas, J.O. (1974) Chromatin structure; oligomers of the histones. Science 184, 865 868.
  • 50
    Kuo, M.H., Brownell, J.E., Sobel, R.E., et al (1996) Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269 272.
  • 51
    Laskey, R.A., Honda, B.M., Mills, A.D., Finch, J.T. (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275, 416 420.
  • 52
    Le, S., Davis, C., Konopka, J.B., Sternglanz, R. (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13, 1029 1042.DOI: 10.1002/(sici)1097-0061(19970915)13:11<1029::aid-yea160>3.0.co;2-1
  • 53
    Lescure, A., Lutz, Y., Eberhard, D., et al (1994) The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J. 13, 1166 1175.
  • 54
    Loo, S. & Rine, J. (1995) Silencing and heritable domains of gene expression. Annu. Rev. Cell Dev. Biol. 11, 519 548.
  • 55
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251 260.
  • 56
    Massari, M.E., Grant, P.A., Pray-Grant, M.G., Berger, S.L., Workman, J.L., Murre, C. (1999) A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell 4, 63 73.
  • 57
    Matsumoto, K., Nagata, K., Ui, M., Hanaoka, F. (1993) Template activating factor I, a novel host factor required to stimulate the adenovirus core DNA replication. J. Biol. Chem. 268, 10582 10587.
  • 58
    McQuibban, G.A., Commisso-Cappelli, C.N., Lewis, P.N. (1998) Assembly, remodeling, and histone binding capabilities of yeast nucleosome assembly protein 1. J. Biol. Chem. 273, 6582 6590.
  • 59
    Meyers, R.E. & Sharp, P.A. (1993) TATA-binding protein and associated factors in polymerase II and polymerase III transcription. Mol. Cell. Biol. 13, 7953 7960.
  • 60
    Mizuguchi, G., Tsukiyama, T., Wisniewski, J., Wu, C. (1997) Role of nucleosome remodeling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141 150.
  • 61
    Mizzen, C.A., Yang, X.J., Kokubo, T., et al (1996) The TAFII 250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261 1270.
  • 62
    Nakajima, N., Horikoshi, M., Roeder, R.G. (1988) Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box–promoter interactions of TFIID. Mol. Cell. Biol. 8, 4028 4040.
  • 63
    Neely, K.E., Hassan, A.H., Wallberg, A.E., et al (1999) Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol. Cell 4, 649 655.
  • 64
    Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H., Nakatani, Y. (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953 959.
  • 65
    Okuwaki, M. & Nagata, K. (1998) Template activating factor-I remodels the chromatin structure and stimulates transcription from chromatin template. J. Biol. Chem. 273, 34511 34518.
  • 66
    Oudet, P., Gross-Bellard, M., Chambon, P. (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281 300.
  • 67
    Panning, B. & Jaenisch, R. (1998) RNA and the epigenetic regulation of X chromosome inactivation. Cell 93, 305 308.
  • 68
    Poon, D., Knittle, R.A., Sabelko, K.A., et al (1993) Genetic and biochemical analyses of yeast TATA-binding protein mutants. J. Biol. Chem. 268, 5005 5013.
  • 69
    Radebaugh, C.A., Matthews, J.L., Geiss, G.K., et al (1994) TATA box-binding protein (TBP) is a constituent of the polymerase I-specific transcription initiation factor TIF-IB (SL1) bound to the rRNA promoter and shows differential sensitivity to TBP-directed reagents in polymerase I, II, and III transcription factors. Mol. Cell. Biol. 14, 597 605.
  • 70
    Sandaltzopoulos, R., Blank, T., Becker, P.B. (1994) Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J. 13, 373 379.
  • 71
    Sassone-Corsi, P., Mizzen, C.A., Cheung, P., et al (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886 891.
  • 72
    Schultz, M.C., Reeder, R.H., Hahn, S. (1992) Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters. Cell 69, 697 702.
  • 73
    Seipel, K., Georgiev, O., Gerber, H.P., Schaffner, W. (1993) C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively. Nucl. Acids Res. 21, 5609 5615.
  • 74
    Sherman, J.M. & Pillus, L. (1997) An uncertain silence. Trends Genet. 13, 308 313.DOI: 10.1016/s0168-9525(97)01198-0
  • 75
    Simon, R.H. & Felsenfeld, G. (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucl. Acids Res. 6, 689 696.
  • 76
    Singer, M.S., Kahana, A., Wolf, A.J., et al (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150, 613 632.
  • 77
    Smith, J.S., Caputo, E., Boeke, J.D. (1999) A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol. Cell. Biol. 19, 3184 3197.
  • 78
    Smith, S. & Stillman, B. (1991) Stepwise assembly of chromatin during DNA replication in vitro. EMBO J. 10, 971 980.
  • 79
    Stillman, B. (1986) Chromatin assembly during SV40 DNA replication in vitro. Cell 45, 555 565.
  • 80
    Suzuki, T., Kimura, A., Nagai, R., Horikoshi, M. (2000) Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 5, 29 42.
  • 81
    Taunton, J., Hassig, C.A., Schreiber, S.L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408 411.
  • 82
    Travers, A. (1999) An engine for nucleosome remodeling. Cell 96, 311 314.
  • 83
    Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J., Wu, C. (1999) Characterization of the Imitation Switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686 697.
  • 84
    Tsukiyama, T. & Wu, C. (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83, 1011 1020.
  • 85
    Tugendreich, S., Boguski, M.S., Seldin, M.S., Hieter, P. (1993) Linking yeast genetics to mammalian genomes: identification and mapping of the human homolog of CDC27 via the expressed sequence tag (EST) data base. Proc. Natl. Acad. Sci. USA 90, 10031 10035.
  • 86
    Utley, R.T., Ikeda, K., Grant, P.A., et al (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498 502.
  • 87
    Verreault, A., Kaufman, P.D., Kobayashi, R., Stillman, B. (1997) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8, 96 108.
  • 88
    Walter, P.P., Owen-Hughes, T.A., Coté, J., Workman, J.L. (1995) Stimulation of transcription factor binding and histone displacement by nucleosome assembly protein 1 and nucleoplasmin requires disruption of the histone octamer. Mol. Cell. Biol. 15, 6178 6187.
  • 89
    Wolffe, A.P. (1998) Chromatin: Structure and Function. 3rd edn. San Diego: Academic Press.
  • 90
    Wolffe, A.P. & Hayes, J.J. (1999) Chromatin disruption and modification. Nucl. Acids Res. 27, 711 720.
  • 91
    Wolffe, A.P., Wong, J., Pruss, D. (1997) Activators and repressors: making use of chromatin to regulate transcription. Genes Cells 2, 291 302.
  • 92
    Workman, J.L. & Kingston, R.E. (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545 579.
  • 93
    Workman, J.L. & Roeder, R.G. (1987) Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51, 613 622.
  • 94
    Workman, J.L., Taylor, I.C., Kingston, R.E. (1991) Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64, 533 544.
  • 95
    Xie, X., Kokubo, T., Cohen, S.L., et al (1996) Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380, 316 322.
  • 96
    Yamamoto, T. & Horikoshi, M. (1997) Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. Chem. 272, 30595 30598.
  • 97
    Yang, X.J., Ogryzko, V.V., Nishikawa, J., Howard, B.H., Nakatani, Y. (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319 324.