SEARCH

SEARCH BY CITATION

References

  • Adachi, O., Kawai, T., Takeda, K., et al. (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143150.
  • Aderem, A. & Ulevitch, R.J. (2000) Toll-like receptors in the induction of the innate immune responses. Nature 406, 782787.DOI: 10.1038/35021228
  • Aderem, A. & Underhill, D.M. (1999) Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593623.
  • Akashi, S., Shimazu, R., Ogata, H., et al. (2000) Cutting Edge: Cell surface expression and lipopolysaccharide signaling via the Toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J. Immunol. 164, 34713475.
  • Aliprantis, A.O., Yang, R.-B., Mark, M.R., et al. (1999) Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor 2. Science 285, 736739.DOI: 10.1126/science.285.5428.736
  • Aliprantis, A.O., Yang, R.-B., Weiss, D.S., Godowski, P., Zychlinsky, A. (2000) The apoptotic signaling pathway activated by Toll-like receptor. EMBO J. 19, 33253336.
  • Arbibe, L., Mira, J.-P., Teusch, N., et al. (2000) Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunol. 1, 533540.
  • Banchereau, J. & Steinman, R.M. (1998) Dendritic cells and the control of immunity. Nature 392, 245252.DOI: 10.1038/32588
  • Bowie, A., Kiss-Toth, E., Symons, J.A., Smith, G.L., Dower, S.K., O'Neill L.A.J. (2000) A46R and A52R from vaccinia virus are antagonist of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 97, 1016210167.
  • Brightbill, H.D., Libraty, D.H., Krutzik, S.R., et al. (1999) Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732736.DOI: 10.1126/science.285.5428.732
  • Burnsm, K., Martinon, F., Esslinger, C., et al. (1998) MyD88, an adaptor protein involved in interleukin-1 signaling. J. Biol. Chem. 273, 1220312209.
  • Chu, W.-M., Gong, X., Li, Z.-W., et al. (2000) DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 103, 909918.
  • Chuang, T.-H. & Ulevitch, R.J. (2000) Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 11, 372378.
  • Chuang, T.-S. & Ulevitch, R.J. (2001) Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim. Biophy. Acta. 1518, 157161.
  • Du, X., Poltorak, A., Wei, Y., Beutler, B. (2000) Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11, 362371.
  • Eaves-Pyles, T., Murthy, K., Liaudet, L., et al. (2001) Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: IκBα degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J. Immunol. 166, 12481260.
  • Hacker, H., Vabulas, R.M., Takeuchi, O., Hoshino, K., Akira, S., Wagner, H. (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J. Exp. Med. 192, 595600.
  • Hajjar, A.M., O'Mahony, D.S., Ozinsky, A., et al. (2001) Cutting Edge: Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 1519.
  • Hayashi, F., Smith, K.D., Ozinsky, A., et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor-5. Nature 410, 10991103.DOI: 10.1038/35074106
  • Haziot, A., Ferrero, E., Kontgen, F., et al. (1996) Resistance to endotoxin shock and reduced dissemination of gram negative bacteria in CD14-deficient mice. Immunity 4, 407414.
  • Heine, H., Kirschning, C.J., Lien, E., Monks, B.G., Rothe, M., Golenbock, D.T. (1999) Cutting Edge: Cell that carry a null mutation for Toll-like receptor 2 are capable for responding to endotoxin. J. Immunol. 162, 69716975.
  • Hemmi, H., Takeuchi, O., Kawai, T., et al. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740745.DOI: 10.1038/35047123
  • Hertz, C.J., Kiertscher, S.M., Godowski, P.J., et al. (2001) Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J. Immunol. 166, 24442450.
  • Hirschfeld, M., Kirschning, C.J., Schwandner, R., et al. (1999) Cutting Edge: Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2. J. Immunol. 163, 23822386.
  • Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N., Weis, J.J. (2000) Cutting Edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165, 618622.
  • Hirschfeld, M., Weis, J.J., Toshchakov, V., et al. (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 14771482.
  • Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. Jr, Ezekowiz, R.A.B. (1999) Phylogenetic perspectives in innate immunity. Science 284, 13131318.DOI: 10.1126/science.284.5418.1313
  • Hoshino, K., Takeuchi, O., Kawai, T., et al. (1999) Cutting Edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps hene product. J. Immunol. 162, 37493752.
  • Jiang, Q., Akashi, S., Miyake, K., Petty, H.R. (2000) Cutting Edge: Lipopolysaccharide induces physical proximity between CD14 and Toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-κB. J. Immunol. 165, 35413544.
  • Kaisho, T. & Akira, S. (2001) Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends. Immunol. 22, 7883.
  • Kaisho, T., Takeuchi, O., Kawai, T., Hoshino, K., Akira, S. (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166, 56885694.
  • Kawai, T., Adachi, O., Ogawa, T., Takeda, K., Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115122.
  • Kirschning, C.J., Wesche, H., Ayres, T.M., Rothe, M. (1998) Human Toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 188, 20912097.
  • Kurt-Jones, E.A., Popova, L., Kwinn, L., et al. (2000) Pattern recognition receptors TLR4 and CD14 meidate response to respiratory syncytial virus. Nature Immunol. 1, 398401.
  • Lehner, M.D., Morath, S., Michelsen, K.S., Schumann, R.R., Hartung, T. (2001) Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different toll-like receptors independent of paracrine mediators. J. Immunol. 166, 51615167.
  • Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.-M., Hoffmann, J.A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973983.
  • Lien, E., Sellati, T.J., Yoshimura, A., et al. (1999) Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 3341933425.
  • Means, T.K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D.T., Fenton, M.J. (1999b) The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 67486755.
  • Means, T.K., Wang, S., Lien, E., Yoshimura, A., Golenbock, D.T., Fenton, M.J. (1999a) Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 39203927.
  • Medzhitov, R. & Janeway, C.A. Jr (1997) Innate Immunity: The virtues of a nonclonal system of recognition. Cell 91, 295298.
  • Medzhitov, R. & Janeway, C.A. Jr (2000) Innate immunity. New Engl. J. Med. 343, 338344.
  • Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A. Jr (1997) A human homlogue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394397.DOI: 10.1038/41131
  • Medzhitov, R., Preston-Hurlburt, P., Kopp, E., et al. (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Moll. Cell 2, 253258.
  • Miyake, K., Yamashita, Y., Ogata, M., Sudo, T., Kimoto, M. (1995) RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucin-rich repeat protein family. J. Exp. Med. 154, 33333340.
  • Moore, K.J., Anderson, L.P., Ingalls, R.R., et al. (2000) Divergent response to LPS and bacteria in CD14-deficient murine macrophages. J. Immunol. 165, 42724280.
  • Muzio, M., Bosisio, D., Polentarutti, N., et al. (2000) Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dedritic cells. J. Immunol. 164, 59986004.
  • Muzio, M., Natoli, G., Saccani, S., Levrero, M., Mantovani, A. (1998) The human toll signaling pathway: divergence of nuclear factor kB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187, 20972101.
  • Muzio, M., Ni, J., Feng, P., Dixit, V.M. (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 16121615.DOI: 10.1126/science.278.5343.1612
  • Nomura, F., Akashi, S., Sakao, Y., et al. (2000) Endotoxin tolerance in mouse peritoneal macrophages correlates with downregulation of surface Toll-like receptor 4 expression. J. Immunol. 164, 34763479.
  • Ogata, H., Su, I., Miyake, K., et al. (2000) The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med. 192, 2329.
  • Ozinsky, A., Underhill, D.M., Fontenot, J.D., et al. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 1376613771.
  • Perera, P.-Y., Mayadas, T.N., Takeuchi, O., et al. (2001) CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and Taxol-inducible gene expression. J. Immunol. 166, 574581.
  • Poltorak, A., He, X., Smirnova, I., et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutation in Tlr4 gene. Science 282, 20852088.
  • Qureshi, S.T., Lariviere, L., Leveque, G., et al. (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 ( Tlr4). J. Exp. Med. 189, 615625.
  • Reis e Sousa, C. (2001) Dendritic cells as sensors of infection. Immunity 14, 495498.DOI: 10.1016/s1074-7613(01)00136-4
  • Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A., Bazan, J.F. (1998) A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95, 588593.
  • Schnare, M., Holt, A.C., Takeda, K., Akira, S., Medzhitov, R. (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 11391142.
  • Schwandner, R., Dziarski, R., Wesche, H., Rothe, M., Kirschning, C.J. (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 1740617409.
  • Sebastiani, G., Leveque, G., Lariviere, L., et al. (2000) Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 64, 230240.
  • Shimazu, R., Akashi, S., Ogata, H., et al. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 17771782.
  • Takeuchi, O., Hoshino, K., Akira, S. (2000b) Cutting Edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 53925396.
  • Takeuchi, O., Hoshino, K., Kawai, T., et al. (1999b) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive cell wall components. Immunity 11, 443451.
  • Takeuchi, O., Kaufmann, A., Grote, K., et al. (2000a) Cutting Edge: Preferentially the R-steroisomer of the Mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554557.
  • Takeuchi, O., Kawai, T., Muhlradt, P.F., et al. (2001) Discrimination of bacterial lipopeptides by Toll-like receptor 6. Int. Immunol., in press.
  • Takeuchi, O., Kawai, T., Sanjo, H., et al. (1999a) TLR6: a novel member of an expanding toll-like receptor family. Gene 231, 5965.DOI: 10.1016/s0378-1119(99)00098-0
  • Takeuchi, O., Takeda, K., Hoshino, K., Adachi, O., Ogawa, T., Akira, S. (2000c) Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol. 12, 113117.
  • Tapping, R.I., Akashi, S., Miyake, K., Godowski, P.J., Tobias, R.S. (2000) Toll-like receptor 4, bit not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 57805787.
  • Tauszig, S., Jouanguy, E., Hoffmann, J.A., Imler, J.-L. (2000) Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. USA 97, 1052010525.
  • Thoma-Uszynski, S., Stenger, S., Takeuchi, O., et al. (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291, 15441547.DOI: 10.1126/science.291.5508.1544
  • Tsuji, S., Matsumoto, M., Takeuchi, O., et al. (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 68, 68836890.
  • Underhill, D.M., Ozinsky, A., Hajjar, A.M., et al. (1999a) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811815.DOI: 10.1038/44605
  • Underhill, D.M., Ozinsky, A., Smith, K.D., Aderem, A. (1999b) Toll-like receptor 2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96, 1445914463.
  • Visintin, A., Mazzoni, A., Spitzer, J.H., Wyllie, D.H., Dower, S.K., Segal, D.M. (2001) Regulation of Toll-like receptors in human monocytes and dendritic cells. J. Immunol. 166, 249255.
  • Wagner, H. (1999) Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol. 73, 329367.
  • Wagner, H. (2001) Toll meets bacterial CpG-DNA. Immunity 14, 499502.DOI: 10.1016/s1074-7613(01)00144-3
  • Werts, C., Tapping, R.I., Mathison, J.C., et al. (2001) Leptospiral liopolysaccharide activates cells through a TLR2-dependent mechanism. Nature Immunol. 2, 346352.
  • Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S., Cao, Z. (1997) MyD88: an adaptor protein that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837847.
  • Williams, M.J., Rodriguez, A., Kimbrell, D.A., Eldon, E.D. (1997) The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 16, 61206130.
  • Wyllie, D.H., Kiss-Toth, E., Visintin, A., et al. (2000) Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J. Immunol. 165, 71257132.
  • Yang, R.-B., Mark, M.R., Gray, A., et al. (1998) Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284288.DOI: 10.1038/26239
  • Yang, R.-B., Mark, M.R., Gurney, A.L., Godowski, P.J. (1999) Signaling events induced by lipopolysaccharide-activated Toll-like receptor 2. J. Immunol. 163, 639643.
  • Yoshimura, A., Lien, E., Ingalls, R.R., Tuomanen, E., Dziarski, R., Golenbock, D. (1999) Cutting Edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 165, 15.