SEARCH

SEARCH BY CITATION

References

  • Adachi, J. & Hasegawa, M. (1996) MOLPHY, version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs 28. Institute of Statistical Mathematics, Tokyo.
  • Akiyoshi, S., Inoue, H., Hanai, J.-i., et al. (1999) c-Ski acts as a transcriptional co-repressor in transforming growth factor-β signaling through interaction with Smads. J. Biol. Chem. 274, 3526935277.
  • Aoki, H., Fujii, M., Imamura, T., et al. (2001) Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J. Cell Sci. 114, 14831489.
  • Bai, R.-Y., Koester, C., Ouyang, T., et al. (2002) SMIF, a Smad4-interacting protein that functions as a co-activator in TGFβ signaling. Nature Cell Biol. 4, 181191.
  • Bai, S., Shi, X., Yang, X. & Cao, X. (2000) Smad6 as a transcriptional corepressor. J. Biol. Chem. 275, 82678270.
  • Bernard, D.J., Chapman, S.C. & Woodruff, T.K. (2002) Inhibin binding protein (InhBP/p120), betaglycan, and the continuing search for the inhibin receptor. Mol. Endocrinol. 16, 207212.
  • Blobe, G.C., Schiemann, W.P. & Lodish, H.F. (2000) Role of transforming growth factor-β in human disease. N. Engl. J. Med. 342, 13501358.
  • Blokzijl, A., Ten Dijke, P. & Ibañez, C.F. (2002) Physical and functional interaction between GATA-3 and Smad3 allows TGF-β regulation of GATA target genes. Curr. Biol. 12, 3545.
  • Chen, C.-R., Kang, Y. & Massagué, J. (2001) Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor growth-β arrest program. Proc. Natl. Acad. Sci. USA 98, 992999.
  • Chen, C.-R., Kang, Y., Siegel, P.M. & Massagué, J. (2002a) E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell 110, 1932.
  • Chen, F., Ogawa, K., Liu, X., Stringfield, T.M. & Chen, Y. (2002b) Repression of Smad2 and Smad3 transactivating activity by association with a novel splice variant of CCAAT-binding factor C subunit. Biochem. J. 364, 571577.
  • Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G. & Whitman, M. (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389, 8589.
  • Chipuk, J.E., Cornelius, S.C., Pultz, N.J., et al. (2002) The androgen receptor represses transforming growth factor–β signaling through interaction with Smad3. J. Biol. Chem. 277, 12401248.
  • Clarke, T.R., Hoshiya, Y., Yi, S.E., Liu, X., Lyons, K.M. & Donahoe, P.K. (2001) Müllerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces Smad6 expression. Mol. Endocrinol. 15, 946959.
  • Daluiski, A., Engstrand, T., Bahamonde, M.E., et al. (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nature Genet. 27, 8488.
  • Datta, P.K., Blake, M.C. & Moses, H.L. (2000) Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-β induced physical and functional interactions between Smads and Sp1. J. Biol. Chem. 275, 4001440019.
  • Datta, P.K. & Moses, H.L. (2000) STRAP and Smad7 synergize in the inhibition of transforming growth factor-β signaling. Mol. Cell. Biol. 20, 31573167.
  • Datto, M.B., Frederick, J.P., Pan, L., Borton, A.J., Zhuang, Y. & Wang, X.-F. (1999) Targeted disruption of smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol. Cell. Biol. 19, 24952504.
  • Dennler, S., Itoh, S., Vivien, D., Ten Dijke, P., Huet, S. & Gauthier, J.M. (1998) Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 30913100.
  • Dong, C., Li, Z., Alvarez, R. Jr, Feng, X.-H. & Goldschmidt-Clermont, P.J. (2000) Microtubule binding to Smads may regulate TGFβ activity. Mol. Cell 5, 2734.
  • Ebisawa, T., Fukuchi, M., Murakami, G., et al. (2001) Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 1247712480.
  • Feng, X.-H., Liang, Y.-Y., Liang, M., Zhai, W. & Lin, X. (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15Ink4B. Mol. Cell 9, 133143.
  • Feng, X.-H., Lin, X. & Derynck, R. (2000) Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β. EMBO J. 19, 51785193.
  • Feng, X.-H., Zhang, Y., Wu, R.Y. & Derynck, R. (1998) The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes Dev. 12, 21532163.
  • Ferrigno, O., Lallemand, F., Verrecchia, F., et al. (2002) Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-β/Smad signaling. Oncogene 21, 48794884.
  • Fu, M., Zhang, J., Zhu, X., et al. (2001) Peroxisome proliferator-activated receptor γ inhibits transforming growth factor β-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3. J. Biol. Chem. 276, 4588845894.
  • Fukuchi, M., Imamura, T., Chiba, T., et al. (2001) Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol. Biol. Cell 12, 14311443.
  • Furuhashi, M., Yagi, K., Yamamoto, H., et al. (2001) Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway. Mol. Cell. Biol. 21, 51325141.
  • Germain, S., Howell, M., Esslemont, G.M. & Hill, C.S. (2000) Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14, 435451.
  • Gouédard, L., Chen, Y.-G., Thevenet, L., et al. (2000) Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Müllerian hormone and its type II receptor. J. Biol. Chem. 275, 2797327978.
  • Goumans, M.-J., Valdimarsdottir, G., Itoh, S., Rosendahl, A., Sideras, P. & Ten Dijke, P. (2002) Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J. 21, 17431753.
  • Hahn, S.A., Schutte, M., Hoque, A.T.M.S., et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1. Science 271, 350353.
  • Hanai, J.-i., Chen, L.F., Kanno, T., et al. (1999) Interaction and functional cooperation of PEBP2/CBF with Smads: Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 3157731582.
  • Hanyu, A., Ishidou, Y., Ebisawa, T., Shimanuki, T., Imamura, T. & Miyazono, K. (2001) The N-domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling. J. Cell Biol. 155, 10171028.
  • Hata, A., Seoane, J., Lagna, G., Montalvo, E., Hemmati-Brivanlou, A. & Massagué, J. (2000) OAZ uses distinct DNA- and protein-binding Zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229240.
  • Heldin, C.-H., Miyazono, K. & Ten Dijke, P. (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465471.
  • Henningfeld, K.A., Friedle, H., Rastegar, S. & Knöchel, W. (2002) Autoregulation of Xvent-2B; direct interaction and functional cooperation of Xvent-2 and Smad1. J. Biol. Chem. 277, 20972103.
  • Hocevar, B.A., Smine, A., Xu, X.-X. & Howe, P.H. (2001) The adaptor molecule Disabled-2 links the transforming growth factor-β receptors to the Smad pathway. EMBO J. 20, 27892801.
  • Hua, X., Miller, Z.A., Wu, G., Shi, Y. & Lodish, H.F. (1999) Specificity in transforming growth factor β-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor µE3, and Smad proteins. Proc. Natl. Acad. Sci. USA 96, 1313013135.
  • Inman, G.J., Nicolas, F.J., Callahan, J.F., et al. (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62, 6574.
  • Ishida, W., Hamamoto, K., Kusanagi, K., et al. (2000) Smad6 is a Smad1/5-induced Smad inhibitor: Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275, 60756079.
  • Itoh, F., Asao, H., Sugamura, K., Heldin, C.-H., Ten Dijke, P. & Itoh, S. (2001) Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J. 20, 41324142.
  • Itoh, S., Ericsson, J., Nishikawa, J., Heldin, C.-H. & Ten Dijke, P. (2000) The transcriptional co-activator P/CAF potentiates TGF-β/Smad signaling. Nucl. Acids Res. 28, 42914298.
  • Janknecht, R., Wells, N.J. & Hunter, T. (1998) TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev. 12, 21142119.
  • Jonk, L.J., Itoh, S., Heldin, C.-H., Ten Dijke, P. & Kruijer, W. (1998) Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 273, 2114521152.
  • Kaji, H., Canaff, L., Lebrun, J.-J., Goltzman, D. & Hendy, G.N. (2001) Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling. Proc. Natl. Acad. Sci. USA 98, 38373842.
  • Kang, H.-Y., Lin, H.-K., Hu, Y.-C., Yeh, S. & Chang, C. (2001) From transforming growth factor-β signaling to androgen action: Identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc. Natl. Acad. Sci. USA 98, 30183023.
  • Kardassis, D., Pardali, K. & Zannis, V.I. (2000) Smad proteins transactivate the human ApoC III promoter by interacting physically and functionally with hepatocyte nuclear factor 4. J. Biol. Chem. 275, 4140541414.
  • Wurthner, Y., Habas, R., Katsuyama, Y., Näär, A.M. & He, X. (2002) A component of the ARC/Mediator complex required for TGFβ/Nodal signaling. Nature 418, 641646.
  • Kavsak, P., Rasmussen, R.K., Causing, C.G., et al. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol. Cell 6, 13651375.
  • Kawabata, M., Imamura, T. & Miyazono, K. (1998a) Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 9, 4961.
  • Kawabata, M., Inoue, H., Hanyu, A., Imamura, T. & Miyazono, K. (1998b) Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 17, 40564065.
  • Kim, R.H., Wang, D., Tsang, M., et al. (2000) A novel Smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-β signal transduction. Genes Dev. 14, 16051616.
  • Kimura, N., Matsuo, R., Shibuya, H., Nakashima, K. & Taga, T. (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J. Biol. Chem. 275, 1764717652.
  • Kirsch, T., Sebald, W. & Dreyer, M.K. (2000) Crystal structure of the BMP-2-BRIA ectodomain complex. Nature Struct. Biol. 7, 492496.
  • Kurisaki, A., Kose, S., Yoneda, Y., Heldin, C.-H. & Moustakas, A. (2001) Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner. Mol. Biol. Cell 12, 10791091.
  • Kurokawa, M., Mitani, K., Irie, K., et al. (1998) The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature 394, 9296.
  • Kusanagi, K., Kawabata, M., Mishima, H.K. & Miyazono, K. (2001) α-Helix 2 in the amino-terminal Mad homology 1 domain is responsible for specific DNA-binding of Smad3. J. Biol. Chem. 276, 2815528163.
  • Labbé, E., Letamendia, A. & Attisano, L. (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-β and Wnt pathways. Proc. Natl. Acad. Sci. USA 97, 83588363.
  • Labbé, E., Silvestri, C., Hoodless, P.A., Wrana, J.L. & Attisano, L. (1998) Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell 2, 109120.
  • Laping, N.J., Grygielko, E., Mathur, A., et al. (2002) Inhibition of transforming growth factor (TGF) β-1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol. Pharmacol. 62, 5864.
  • Lee, D.K., Kim, B.-C., Brady, J.N., Jeang, K.-T. & Kim, S.J. (2002a) Human T-cell lymphotropic virus 1-Tax inhibits TGF-β signaling by blocking the association of Smad proteins with Smad binding element. J. Biol. Chem. 277, 3376633775.
  • Lee, D.K., Kim, B.-C., Kim, I.Y., Cho, E.-A., Satterwhite, D.J. & Kim, S.-J. (2002b) The human papilloma virus E7 oncoprotein inhibits TGF-β signaling by blocking of the Smad complex to its target sequence. J. Biol. Chem. 277, 3855738564.
  • Lee, D.K., Park, S.H., Yi, Y., et al. (2001) The hepatitis B virus encoded oncoprotein pX amplifies TGF-β family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis. Genes Dev. 15, 455466.
  • Leong, G.M., Subramaniam, N., Figueroa, J., et al. (2001) Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-β-dependent transcription. J. Biol. Chem. 276, 1824318248.
  • Liberati, N.T., Datto, M.B., Frederick, J.P., et al. (1999) Smads bind directly to the Jun family of AP-1 transcription factors. Proc. Natl. Acad. Sci. USA 96, 48444849.
  • Lin, X., Liang, M. & Feng, X.-H. (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in TGF-β signaling. J. Biol. Chem. 275, 3681836822.
  • Liu, D., Black, B.L. & Derynck, R. (2001) TGF-β inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev. 15, 29502966.
  • Liu, B., Dou, C.L., Prabhu, L. & Lai, E. (1999) FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor β signals. Mol. Cell. Biol. 19, 424430.
  • Liu, X., Elia, A.E.H., Law, S.F., Golemis, E.A., Farley, J. & Wang, T. (2000) A novel ability of Smad3 to regulate proteasomal degradation of a Cas family member HEF1. EMBO J. 19, 67596769.
  • Liu, F., Massagué, J. & Ruiz i Altaba, A. (1998) Carboxy-terminally truncated Gli3 proteins associate with Smads. Nature Genet. 20, 325326.
  • Lopez-Rovira, T., Chalaux, E., Rosa, J.L., Bartrons, R. & Ventura, F. (2000) Interaction and functional cooperation of NFκB with Smads. J. Biol. Chem. 275, 2893728946.
  • Macías-Silva, M., Hoodless, P.A., Tang, S.J., Buchwald, M. & Wrana, J.L. (1998) Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2. J. Biol. Chem. 273, 2562825636.
  • Massagué, J. (1998) TGF-β signal transduction. Annu. Rev. Biochem. 67, 753791.
  • Matsuda, T., Yamamoto, T., Muraguchi, A. & Saatcioglu, F. (2001) Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3. J. Biol. Chem. 276, 4290842914.
  • Miura, S., Takeshita, T., Asao, H., et al. (2000) Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol. Cell. Biol. 20, 93469355.
  • Miyazono, K., Kusanagi, K. & Inoue, H. (2001) Divergence and convergence of TGF-β/BMP signaling. J. Cell. Physiol. 187, 265276.
  • Miyazono, K. & Miyazawa, K. (2002) Id: a target of BMP signaling. Sci. STKE, in press.
  • Miyazono, K., Ten Dijke, P. & Heldin, C.-H. (2000) TGF-β signaling by Smad proteins. Adv. Immunol. 75, 115157.
  • Moustakas, A., Souchelnytskyi, S. & Heldin, C.-H. (2001) Smad regulation in TGF-β signal transduction. J. Cell Sci. 114, 43594369.
  • Nakashima, K., Takizawa, T., Ochiai, W., et al. (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl. Acad. Sci. USA 98, 58685873.
  • Nicholls, A., Sharp, K.A. & Honig, B. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. General 11, 282296.
  • Nishihara, A., Hanai, J.-i., Imamura, T., Miyazono, K. & Kawabata, M. (1999) E1A inhibits transforming growth factor-β signaling through binding to Smad proteins. J. Biol. Chem. 274, 2871628723.
  • Nishihara, A., Hanai, J.-i., Okamoto, N., et al. (1998) Role of p300, a transcriptional coactivator, in signalling of TGF-β. Genes Cells 3, 613623.
  • Nishita, H., Hashimoto, M.K., Ogata, S., et al. (2000) Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature 403, 781785.
  • Nomura, M. & Li, E. (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393, 786790.
  • Norton, J.D., Deed, R.W., Craggs, G. & Sabilitzky, F. (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 5865.
  • Oh, S.P., Seki, T., Goss, K.A., et al. (2000) Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc. Natl. Acad. Sci. USA 97, 26262631.
  • Pardali, K., Kurisaki, A., Moren, A., Ten Dijke, P., Kardassis, D. & Moustakas, A. (2000b) Role of Smad proteins and transcription factor Sp1 in p21Waf-1/Cip-1 regulation by transforming growth factor-β. J. Biol. Chem. 275, 2924429256.
  • Pardali, E., Xie, X.Q., Tsapogas, P., et al. (2000a) Smad and AML proteins synergistically confer transforming growth factor β1 responsiveness to human germ-line IgA genes. J. Biol. Chem. 275, 35523560.
  • Pouponnot, C., Jayaraman, L. & Massagué, J. (1998) Physical and functional interaction of SMADs and p300/CBP. J. Biol. Chem. 273, 2286522868.
  • Preobrazhenska, O., Yakymovych, M., Kanamoto, T., et al. (2002) BRCA2 and Smad3 synergize in regulation of gene transcription. Oncogene 21, 56605664.
  • Qin, B.Y., Chacko, B.M., Lam, S.S., De Caestecker, M.P., Correia, J.J. & Lin, K. (2001) Structural basis of Smad1 activation by receptor kinase phosphorylation. Mol. Cell 6, 13031312.
  • Qin, B.Y., Lam, S.S., Correia, J.J. & Lin, K. (2002) Smad3 allostery links TGF-β receptor kinase activation to transcriptional control. Genes Dev. 16, 19501963.
  • Quinn, Z.A., Yang, C.-C., Wrana, J.L. & McDermott, J.C. (2001) Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins. Nucl. Acids Res. 29, 732742.
  • Reissmann, E., Jörnvall, H., Blokzijl, A., et al. (2001) The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev. 15, 20102022.
  • Ring, C., Ogata, S., Meek, L., et al. (2002) The role of a Williams–Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling. Genes Dev. 15, 455466.
  • Rodriguez, C., Huang, L.J.-S., Son, J.K., McKee, A., Xiao, Z. & Lodish, H.F. (2001) Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-β signaling. J. Biol. Chem. 276, 3022430230.
  • Rosen, V. & Wozney, J.M. (2002) Bone morphogenetic proteins. In: Principles of Bone Biology (eds J.P.Bilezikian, L.G.Raisz, G.A.Rodan, et al.), 2nd edn, pp. 919928. San Diego: Academic Press.
  • Sano, Y., Harada, J., Tashiro, S., Gotoh-Mandeville, R., Maekawa, T. & Ishii, S. (1999) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-β signaling. J. Biol. Chem. 274, 89498957.
  • Sasaki, A., Masuda, Y., Ohta, Y., Ikeda, K. & Watanabe, K. (2001) Filamin associates with Smads and regulates transforming growth factor-β signaling. J. Biol. Chem. 274, 1787117877.
  • Scherer, A. & Graff, J.M. (2000) Calmodulin differentially modulates Smad1 and Smad2 signaling. J. Biol. Chem. 275, 4143041438.
  • Shen, X., Hu, P.P., Liberati, N.T., Datto, M.B., Frederick, J.P. & Wang, X.-F. (1998) TGF-β-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol. Biol. Cell 9, 33093319.
  • Shi, X., Bai, S., Li, L. & Cao, X. (2001) Hoxa-9 represses TGF-β-induced osteopontin gene transcription. J. Biol. Chem. 276, 850855.
  • Shi, X., Yang, X., Chen, D., Chang, D. & Cao, X. (1999) Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J. Biol. Chem. 274, 1371113717.
  • Shimizu, K., Bourillot, P.-Y., Nielsen, S.J., Zorn, A. & Gurdon, J.B. (2001) Swift is a novel BRCT domain coactivator of Smad2 in transforming growth factor β signaling. Mol. Cell. Biol. 21, 39013912.
  • Shioda, T., Lechleider, R.J., Dunwoodie, S.L., et al. (1998) Transcriptional activating activity of Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc. Natl. Acad. Sci. USA 95, 97859790.
  • Song, C.Z., Tian, X. & Gelehrter, T.D. (1999) Glucocorticoid receptor inhibits transforming growth factor-β signaling by directly targeting the transcriptional activation function of Smad3. Proc. Natl. Acad. Sci. USA 96, 1177611781.
  • Stroschein, S.L., Wang, W., Zhou, S., Zhou, Q. & Luo, K. (1999) Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286, 771774.
  • Stroschein, S.L., Bonni, S., Wrana, J.L. & Luo, K. (2001) Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 15, 28822836.
  • Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 46734680.
  • Topper, J.N., DiChiara, M.R., Brown, J.D., et al. (1998) CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor β transcriptional responses in endothelial cells. Proc. Natl. Acad. Sci. USA 95, 95069511.
  • Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L. & Wrana, J.L. (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 11, 779791.
  • Verschueren, K., Remacle, J.E., Collart, C., et al. (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J. Biol. Chem. 274, 2048920498.
  • Visser, J.A., Olaso, R., Verhoef-Post, M., Kramer, P., Themmen, A.P.N. & Ingraham, H.A. (2001) The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling. Mol. Endocrinol. 15, 936945.
  • Wan, M., Cao, X., Wu, Y., et al. (2002) Jab1 antagonizes TGF-β signaling by inducing Smad4 degradation. EMBO Report 3, 171176.
  • Wang, W., Mariani, F.V., Harland, R.M. & Luo, K. (2000) Ski represses bone morphogenetic protein signaling in Xenopus and mammalian cells. Proc. Natl. Acad. Sci. USA 97, 1439314399.
  • Wotton, D., Lo, R.S., Lee, S. & Massagué, J. (1999) A Smad transcriptional corepressor. Cell 97, 2939.
  • Wrana, J.L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. (1994) Mechanism of activation of the TGF-β receptor. Nature 370, 341347.
  • Wu, J.W., Hu, M., Chai, J., et al. (2001) Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell 8, 12771289.
  • Wurthner, J.U., Frank, D.B., Felici, A., et al. (2001) Transforming growth factor-β receptor-associated protein 1 is a Smad4 chaperone. J. Biol. Chem. 276, 1949519502.
  • Xiao, Z., Liu, X. & Lodish, H.F. (2000) Importin β mediates nuclear translocation of Smad 3. J. Biol. Chem. 275, 2342523428.
  • Yagi, K., Furuhashi, M., Aoki, H., et al. (2002) c-myc is a downstream target of Smad pathway. J. Biol. Chem. 277, 854861.
  • Yamakawa, N., Tsuchida, K. & Sugino, H. (2002) The ras GAP-binding protein, Dok-1, mediates activin signaling via serine/threonine kinase receptors. EMBO J. 21, 16841694.
  • Yamamoto, T.S., Takagi, C., Hyodo, A.C. & Ueno, N. (2001) Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling. Development 128, 27692779.
  • Yanagisawa, J., Yanagi, Y., Masuhiro, Y., et al. (1999) Convergence of transforming growth factor-β and vitamin D signaling pathways on SMAD transcriptional coactivators. Science. 283, 13171321.
  • Yang, X., Letterio, J.J., Lechleider, R.J., et al. (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 12801291.
  • Yokota, Y. & Mori, S. (2002) Role of Id family proteins in growth control. J. Cell. Physiol. 190, 2128.
  • Yoshida, Y., Tanaka, S., Umemori, H., et al. (2000) Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103, 10851097.
  • Zawel, L., Le Dai, J., Buckhaults, P., et al. (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611617.
  • Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A. & Derynck, R. (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc. Natl. Acad. Sci. USA 98, 974979.
  • Zhang, Y., Feng, X.-H. & Derynck, R. (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 394, 909913.
  • Zhu, H., Kavsak, P., Abdollah, S., Wrana, J.L. & Thomsen, G.H. (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687693.
  • Zhu, Y., Richardson, J.A., Parada, L.F. & Graff, J.M. (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94, 703714.
  • Zimmerman, C.M., Kariapper, M.S. & Mathews, L.S. (1998) Smad proteins physically interact with calmodulin. J. Biol. Chem. 273, 677680.
  • Zimmers, T.A., Davies, M.V., Koniaris, L.G., et al. (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296, 14861488.