SEARCH

SEARCH BY CITATION

Keywords:

  • 3-D numerical modelling;
  • Ebro Basin;
  • erosion;
  • flexure;
  • subsidence;
  • surface processes;
  • Valencia Trough

Summary

The Ebro Basin, the southern foreland basin of the Pyrenees, has undergone a complex evolution in which, apart from the Pyrenees, the Iberian Range and the Catalan Coastal Ranges have played an important role, both as sediment sources and as basin confining structures. The deflected basement underlying the Ebro Basin dips north, suggesting a lithospheric-scale control on the structure of this basin. This is compatible with the results of subsidence analyses, which show that the study area is not in a local mode of isostatic compensation.

In order better to understand the mechanisms that led to the present configuration of the Ebro Basin, and particularly the relevance of the various kinds of (un)loading (e.g. surrounding fold-and-thrust belts, basin topography, subsurface loads), we carried out a 3-D kinematic modelling study that accounts for the flexural state of the lithosphere, subjected to various loads applied at its lateral boundaries, and the sedimentary fill of the basin. We also included the effect of Neogene extensional tectonics along the eastern basin margin, which is related to the opening of the Valencia Trough.

We show the suitability of the 3-D lithospheric-scale flexural modelling approach to the study of NE Iberia. Modelling results point to a relatively strong lithosphere in this area, with values of effective elastic thickness ranging from 10 to 35 km in the Ebro Basin, increasing towards the Pyrenees. We also find that the topographic (tectonic) load itself is insufficient to explain the observed basement deflection. Thus an extra subsurface load beneath the Pyrenees, corresponding to the underthrusted Iberian lithosphere, is required. The effect of lithospheric stretching in the Valencia Trough on the Ebro Basin is appreciable only in its eastern part, where the lithosphere was uplifted. This had considerable repercussions on the sedimentary and erosional regime of the Ebro Basin. We have analysed the link between the stretching-related, tectonically uplifted areas and the erosional patterns observed onshore northeast Iberia.