Responses of multiple generations of Gastrophysa viridula, feeding on Rumex obtusifolius, to elevated CO2


J. B. Whittaker


Rumex obtusifolius plants and three generations of the tri-voltine leaf beetle Gastrophysa viridula were simultaneously exposed to elevated CO2 (600 ppm) to determine its effect on plant quality and insect performance. This exposure resulted in a reduction in leaf nitrogen, an increase in the C/N ratio and lower concentrations of oxalate in the leaves than in ambient air (350 ppm). Despite these changes in food quality, the effect of elevated CO2 on larvae of Gastrophysa viridula over three generations was minimal. However, the effect of CO2 did differ slightly between the generations of the insect. For the first generation, the results obtained were different from many of the published results in that elevated CO2 had no measurable effects on performance, except that third instar larvae showed compensatory feeding. Food quality, including leaf nitrogen content, declined over time in material grown in both ambient and elevated CO2. The results obtained for the second generation were similar to the first except that first instar larvae showed reduced relative growth rate in elevated CO2. Development time from hatching to pupation decreased over each generation, probably as a result of increasing temperatures. Measurements of adult performance showed that fecundity at the end of the second generation was reduced relative to the first, in line with the reduction in food quality. In addition at the end of the second generation, but not at the end of the first generation, adult females in elevated CO2 laid 30% fewer eggs per day and the eggs laid were 15% lighter than those in ambient conditions. These lighter eggs, coupled with no effect of elevated CO2 on growth during the third generation, meant that the larvae were consistently smaller in elevated CO2 during this generation. These results offer further insights into the effect that elevated CO2 will have on insect herbivores and provide a more detailed basis for population predictions.