Assessment of annual carbon exchange in a water-stressed Pinus radiata plantation: an analysis based on eddy covariance measurements and an integrated biophysical model


Almut Arneth, Landcare Research, PO Box 69
Lincoln, New Zealand, fax +64/3325 2418,


We used a combination of eddy flux, chamber and environmental measurements with an integrated suite of models to analyse the seasonality of net ecosystem carbon uptake (FCO2) in an 8-year-old, closed canopy Pinus radiata D.Don plantation in New Zealand (42°52′ S, 172°45′ E). The analyses utilized a biochemically based, big-leaf model of tree canopy photosynthesis (Ac), coupled to multiplicative environmental-constraint functions of canopy stomatal conductance (Gc) via environmental measurements, a temperature-dependent model of ecosystem respiration (Reco), and a soil water balance model. Available root zone water storage capacity at the measurement site is limited to about 50 mm for the very stony soil, and annual precipitation is only 660 mm, distributed evenly throughout the year. Accordingly the site is prone to soil moisture deficit throughout the summer.

Gc and Ac obtained maximum rates early in the growing season when plentiful soil water supply was associated with sufficient quantum irradiance (Qabs), and moderate air saturation deficit (D) and temperature (T). From late spring onwards, soil water deficit and D confined Gc and Ac congruously, which together with the solely temperature dependency of Reco resulted in the pronounced seasonality in FCO2. Reflecting a light-limitation of Ac in the closed canopy, modelled annual carbon (C) uptake was most sensitive to changes in Qabs. However, Qabs did not vary significantly between years, and changes in annual FCO2 were mostly due to variability in summer rainfall and D. Annual C-uptake of the forest was 717 g C m–2 in a near-average rainfall year, exceeding by one third the net uptake in a year with 20% less than average rainfall (515 g C m–2).