Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model


R.C. Dewar, fax + 33/ 5 56 84 31 35, e-mail


Based on short-term experiments, many plant growth models – including those used in global change research – assume that an increase in temperature stimulates plant respiration (R) more than photosynthesis (P), leading to an increase in the R/P ratio. Longer-term experiments, however, have demonstrated that R/P is relatively insensitive to growth temperature. We show that both types of temperature response may be reconciled within a simple substrate-based model of plant acclimation to temperature, in which respiration is effectively limited by the supply of carbohydrates fixed through photosynthesis. The short-term, positive temperature response of R/P reflects the transient dynamics of the nonstructural carbohydrate and protein pools; the insensitivity of R/P to temperature on longer time-scales reflects the steady-state behaviour of these pools. Thus the substrate approach may provide a basis for predicting plant respiration responses to temperature that is more robust than the current modelling paradigm based on the extrapolation of results from short-term experiments. The present model predicts that the acclimated R/P depends mainly on the internal allocation of carbohydrates to protein synthesis, a better understanding of which is therefore required to underpin the wider use of a constant R/P as an alternative modelling paradigm in global change research.