Get access

Carbon dioxide and temperature effects on forage establishment: tissue composition and nutritive value


K.J. Boote, tel +1/ 352 392-1811, fax +1/ 352 392-1840, e-mail


Atmospheric CO2 concentration ([CO2]) and temperature are likely to increase in the future and may change plant growth and composition characteristics. Rhizoma peanut (Arachis glabrata Benth.) and bahiagrass (Paspalum notatum Flügge) were grown on a natural field soil in temperature-gradient greenhouses to evaluate the effects of elevated [CO2] and temperature on tissue composition and digestibility during the establishment year. Carbon dioxide levels were maintained at 365 (ambient) and 640 μL CO2 L–1 air. The temperature-gradient greenhouses were regulated to obtain air temperature sectors of 0.2, 1.5, 2.9, and 4.5 °C above ambient. Samples were taken of previously undefoliated herbage at 57, 86, 121, 148, and 217 days after planting and entire plots were harvested at 218 days after planting. Elevated [CO2] increased total nonstructural carbohydrate concentration in rhizoma peanut leaves by almost 50%. Rhizoma peanut leaf N concentration was 6% lower at elevated than at ambient [CO2]. The N concentration in new rhizomes of rhizoma peanut was increased by high [CO2], while the N concentration in bahiagrass was not affected by temperature or [CO2]. No effects of [CO2] and temperature were found on neutral detergent fibre in rhizoma peanut leaves or stems; however, elevated [CO2] increased neutral detergent fibre in bahiagrass leaves. Only at season end was in vitro organic matter digestion of rhizoma peanut higher at ambient (623 g kg–1) than at elevated [CO2] (609 g kg–1). Elevated [CO2] had a greater effect on tissue composition of rhizoma peanut than of bahiagrass. These data suggest that elevated temperature and CO2-induced changes in chemical composition of forage species adapted to humid subtropics will be relatively small, particularly for C4 species.