Impact of global warming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids


Seppo Kellomäki, University of Joensuu, Faculty of Forestry, P.O.Box 111, 80101 Joensuu, Finland, Fax: + 358 13 2514444, E-mail:


This study aims to identify how climate change may influence total emissions of monoterpene and isoprene from boreal forest canopies. The whole of Finland is assumed to experience an annual mean temperature (T) increase of 4 °C and a precipitation increase of 10% by the year 2100. This will increase forest resources throughout the country. At the same time, the proportions of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in southern Finland (60°≤ latitude < 65°N) will be reduced from the current 40–50% to less than 10–20%, with increased dominance of birches (Betula pendula and Betula pubescens). In northern Finland (65°≤ latitude < 70°N), the proportions of Norway spruce and Scots pine will be balanced at a level of about 40% as the result of an increase in Norway spruce from the current 21% to 37% and a concurrent reduction in Scots pine from 63% to 40%. The proportion of birches is predicted to increase from the current 17% to 23%, but these will become the dominant species only on the most fertile sites.

Total mean emissions of monoterpene by Scots pine will be reduced by 80% in southern Finland, but will increase by 62% in the north. Emissions from Norway spruce canopies will increase by 4% in the south but by 428% in the north, while those from birch canopies will increase by about 300% and 113%, respectively. Overall emissions of monoterpene over the whole country amount to about 950 kg km−2 y−1 under current temperature conditions and will increase by 17% to 1100 kg km−2 y−1 with elevated temperature and precipitation, mainly because of an increase at northern latitudes.

Under current conditions, emissions of isoprene follow the spatial distribution of spruce canopies (the only isoprene-emitting tree species that forms forests in Finland) with four times higher emissions in the south than in the north. The elevated temperature and the changes in the areal distribution of Norway spruce will result in increases in isoprene emissions of about 37% in southern Finland and 435% in northern Finland. Annual mean isoprene emissions from Norway spruce canopies over the whole country will increase by about 60% up to the year 2100.