Get access

Terrestrial net primary production estimates for 0.5° grid cells from field observations—a contribution to global biogeochemical modeling


Daolan Zheng, tel. 301 314 2798, fax 301 314 9299, e-mail:


Net Primary Production (NPP) is an important component of the carbon cycle and, among the pools and fluxes that make up the cycle, it is one of the steps that are most accessible to field measurement. While easier than some other steps to measure, direct measurement of NPP is tedious and not practical for large areas and so models are generally used to study the carbon cycle at a global scale. Nevertheless these models require field measurements of NPP for parameterization, calibration and validation. Most NPP data are for relatively small field plots that cannot represent the 0.5° × 0.5° grid cells that are commonly used in global scale models. Furthermore, technical difficulties generally restrict NPP measurements to aboveground parts and sometimes do not even include all components of aboveground NPP. Thus direct inter-comparison between field data obtained in different studies or comparison of these results with coarse resolution model outputs can be misleading. We summarize and present a series of methods that were used by original authors to estimate NPP and how and what we have done to prepare a consistent data set of NPP for 0.5 °grid cells for a range of biomes from these studies. The methods used for estimation of NPP include: (i) aggregation of fine-scale (plot or stand-level) vegetation inventory data to larger grid cells, (ii) mapping of grid cells and area weighting of field NPP observations in each mapped class, (iii) direct correlation of extensive data sets of ground measurements with remotely sensed spectral vegetation indices, (iv) local modeling of NPP using key independent variables, for which maps are available at the scale of the grid cell, and (v) regression analysis to link productivity with controlling environmental variables. For a few grid cells whose NPP were obtained for multiple years, temporal analysis was conducted. The grid cells are grouped to the biome level and are compared with existing compilations of field NPP and the results of the Miami potential NPP model. Mean NPP was similar to the well-known compilation of Whittaker and Likens, except for temperate evergreen needle-leaved forest, woodland, and shrubland. The grid cell datasets are a contribution to the International Geosphere-Biosphere Programme (IGBP) Data and Information System (DIS) Global Primary Production Data Initiative (GPPDI). The full dataset currently contains 3654 cells (including replicate measurements) developed from 15 studies representing NPP in croplands, sparse vegetation, shrub lands, grasslands, and forests worldwide. An edited subset consists of 2335 cells in which outliers were removed and all replicate measurements were averaged for each unique geographical location. Most of the data incorporated into GPPDI were wholly or partly developed by participants in the GPPDI, in addition to the present authors. These studies are gathered together here to provide a consistent account of the grid cell component of GPPDI and an analysis of the entire data set. The datasets have been deposited in an IGBP-DIS GPPDI database (