Reciprocal effects of interleukin-4 and interferon-γ on immunoglobulin E-mediated mast cell degranulation: a role for nitric oxide but not peroxynitrite or cyclic guanosine monophosphate


Dr Coleman Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, UK.


We report that cultured rat peritoneal cells spontaneously synthesize nitric oxide and this is associated with active suppression of mast cell secretory function. Addition of interleukin-4 (IL-4) or the nitric oxide synthase inhibitor N-monomethyl-l-arginine to peritoneal cells inhibited nitric oxide synthesis and enhanced anti-IgE-mediated mast cell degranulation, measured as serotonin release. Interferon-γ (IFN-γ) completely overcame the enhancement of serotonin release and suppression of nitrite production induced by IL-4. Over several experiments, with or without IL-4 and/or IFN-γ, serotonin release correlated inversely with nitrite production. On a cell-for-cell basis, non-mast cells produced ≈30 times more nitrite than mast cells in peritoneal cell populations, with or without IFN-γ stimulation. The nitric oxide donor S-nitrosoglutathione inhibited anti-IgE-induced serotonin release from purified mast cells, whereas 8-bromo-cyclic GMP, the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, superoxide dismutase and the peroxynitrite scavenger uric acid, were without effect. We conclude that IL-4 and IFN-γ reciprocally regulate mast cell secretory responsiveness via control of nitric oxide synthesis by accessory cells; the nitric oxide effect on mast cells is direct but does not involve cyclic GMP or peroxynitrite.