• 1
    Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol 1996; 157:1406 14.
  • 2
    Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8 (+) T cells. J Exp Med 1997; 186:239 45.
  • 3
    Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96:1036 41.DOI: 10.1073/pnas.96.3.1036
  • 4
    Maldonado-Lopez R, De Smedt T, Michel P et al. CD8 alpha+ and CD8alpha– subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189:587 92.
  • 5
    Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, Grabbe S. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 1999; 162:168 75.
  • 6
    Link J, Soderstrom M, Olsson T, Hojeberg B, Ljungdahl A, Link H. Increased transforming growth factor-beta, interleukin-4, and interferon-gamma in multiple sclerosis. Ann Neurol 1994; 36:379 86.
  • 7
    Xiao BG, Huang YM, Xu LY, Ishikawa M, Link H. Mechanisms of recovery from experimental allergic encephalomyelitis induced with myelin basic protein peptide 68–86 in Lewis rats: a role for dendritic cells in inducing apoptosis of CD4+T cells. J Neuroimmunol 1999; 97:25 36.DOI: 10.1016/s0165-5728(99)00041-7
  • 8
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767 811.
  • 9
    Salomon B, Cohen JL, Masurier C, Klatzmann D. Three populations of mouse lymph node dendritic cells with different origins and dynamics. J Immunol 1998; 160:708 17.
  • 10
    Smith AL & De St Groth BF. Antigen-pulsed CD8α dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. J Exp Med 1999; 189:593 8.
  • 11
    Chakraborty A, Li L, Chakraborty NG, Mukherji B. Stimulatory and inhibitory differentiation of human myeloid dendritic cells. Clin Immunol 2000; 94:88 98.DOI: 10.1006/clim.1999.4826
  • 12
    Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997; 159:4772 80.
  • 13
    Groux H, Bigler M, De Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996; 184:19 29.
  • 14
    Takayama T, Nishioka Y, Lu L, Lotze MT, Tahara H, Thomson AW. Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation 1998; 66:1567 74.
  • 15
    Gao JX, Madreas J, Zeng W, Cameron MJ, Zhang Z, Wang JJ, Zjong R, Grant D. CD40-deficient dendritic cells producing interleukin-10, but not interleukin-12, induce T-cell hyporesponsiveness in vitro and prevent acute allograft rejection. Immunology 1999; 98:159 70.DOI: 10.1046/j.1365-2567.1999.00863.x
  • 16
    Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13:251 76.
  • 17
    Kalinski P, Hilkens CMU, Wierenga EA, Kapsenberg ML. T cell priming by type 1 and type 2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999; 20:561 7.DOI: 10.1016/s0167-5699(99)01547-9
  • 18
    Steinman RM, Turely S, Mellrman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191:411 6.
  • 19
    Miller SD, Tan LJ, Kennedy MK, Dal Canto MC. Specific immunoregulation of the induction and effector stages of relapsing EAE via neuroantigen-specific tolerance induction. Ann N Y Acad Sci 1991; 636:79 94.
  • 20
    Miller SD, Tan LJ, Pope L, McRae BL, Karpus WJ. Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int Rev Immunol 1992; 9:203 22.
  • 21
    Bai XF, Shi FD, Xiao BG, Li HL, Van Der Meide PH, Link H. Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-beta mRNA. J Neuroimmunol 1997; 80:65 75.DOI: 10.1016/s0165-5728(97)00133-1
  • 22
    Xiao BG, Zhang GX, Shi FD, Ma CG, Link H. Decrease of LFA-1 is associated with upregulation of TGF-beta in CD4 (+) T cell clones derived from rats nasally tolerized against experimental autoimmune myasthenia gravis. Clin Immunol Immunopathol 1998; 89:196 204.DOI: 10.1006/clin.1998.4537
  • 23
    Ma CG, Zhang GX, Xiao BG, Link H. Cellular mRNA expression of interferon-gamma (IFN-gamma), IL-4 and transforming growth factor-beta (TGF-beta) in rats nasally tolerized against experimental autoimmune myasthenia gravis (EAMG). Clin Exp Immunol 1996; 104:509 16.
  • 24
    Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265:1237 40.
  • 25
    Shi FD, Li HL, Wang HB, Bai XF, Van Der Meide PH, Link H, Ljunggren HG. Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis: identification of regulatory cells. J Immunol 1999; 162:5757 63.
  • 26
    Inobe J, Slavin AJ, Komagata Y, Chen Y, Liu L, Weiner HL. IL-4 is a differentiation factor for transforming growth factor-beta secreting Th3 cells and oral administration of IL-4 enhances oral tolerance in experimental allergic encephalomylitis. Eur J Immunol 1998; 28:2780 90.DOI: 10.1002/(sici)1521-4141(199809)28:09<2780::aid-immu2780>;2-j
  • 27
    Miller A, Lider O, Roberts A, Sporn MB, Weiner HL. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor β after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89:421 5.
  • 28
    Tarrant TK, Silver PB, Wahlsten JL, Rizzo LV, Chan CC, Wiggert B, Caspi RR. IL-12 protects from a Th-1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon-γ, nitric oxide, and apoptosis. J Exp Med 1999; 189:219 30.
  • 29
    Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramashaw IA. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 1996; 157:3223 7.
  • 30
    Cowden WB, Cullen FA, Staykova MA, Willenborg DO. Nitric oxide is a potential down-regulating molecule in autoimmune disease: inhibition of nitric oxide production renders PVG rats highly susceptible to EAE. J Neuroimmunol 1998; 88:1 8.DOI: 10.1016/s0165-5728(98)00040-x
  • 31
    O'brien NC, Charlton B, Cowden WB, Willenborg DO. Nitric oxide plays a critical role in the recovery of Lewis rats from experimental autoimmune encephalomyelitis and the maintenance of resistance to reinduction. J Immunol 1999; 163:6841 7.
  • 32
    Willenborg DO, Fordham SA, Staykova MA, Ramshaw IA, Cowden WB. IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J Immunol 1999; 163:5278 86.
  • 33
    Suss G & Shortman K. A subset of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 1996; 183:1789 96.