• 1
    Granger DL, Hibbs Jb Jr, Perfect JR, Durack DT. Specific amino acid ( l-arginine) requirement for microbiostatic activity of murine macrophages . J Clin Invest 1988; 81:1129 36.
  • 2
    Nathan CF & Hibbs JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 1991; 3:65 70.
  • 3
    Doi T, Ando M, Akaike T, Suga M, Sato K, Maeda H. Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect Immun 1993; 61:1980 9.
  • 4
    James SL. Role of nitric oxide in parasitic infections. Microbiol Rev 1995; 59:533 47.
  • 5
    Umezawa K, Akaike T, Fujii S, Suga M, Setoguchi K, Ozawa A, Maeda H. Induction of nitric oxide synthesis and xanthine oxidase and their role in the antimicrobial mechanism against Salmonella typhimurium in mice. Infect Immun 1997; 65:2932 40.
  • 6
    Badwey JA & Karnovsky ML. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 1980; 49:695 726.
  • 7
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87:1620 4.
  • 8
    Beckman JS & Koppenol WH. Nitric oxide, superoxide and peroxynitrite: The good, bad, and the ugly. Am J Physiol 1996; 271:C1424 37.
  • 9
    Rubbo H, Darley-Usmar V, Freeman BA. Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol 1996; 9:809 20.
  • 10
    Estévez AG, Crow JP, Sampson JB et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 1999; 286:2498 500.DOI: 10.1126/science.286.5449.2498
  • 11
    Sawa T, Akaike T, Maeda H. Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase. J Biol Chem 2000; 275:32467 74.
  • 12
    Reiter CD, Teng RJ, Beckman JS. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem 2000; 275:32460 6.
  • 13
    Akaike T & Maeda H. Molecular pathogenesis of influenza virus pneumonia: Impacts of proteases, kinins, and oxygen radicals derived from hosts. In: TakishimaT ed. Basic and Clinical Aspects of Pulmonary Fibrosis. Boca Raton, FL: CRC Press, 1994:213 27.
  • 14
    Maeda H & Akaike T. Oxygen free radicals as pathogenic molecules in viral diseases. Proc Soc Exp Biol Med 1991; 198:721 7.
  • 15
    Akaike T, Suga M, Maeda H. Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 1998; 217:64 73.
  • 16
    Akaike T & Maeda H. Nitric oxide in influenza. In: FangFC ed. Nitric Oxide in Infection. New York: Kluwer Academic/Plenum Publishers, 1999; 397 415.
  • 17
    Akaike T & Maeda H. Pathophysiological effects of high-output production of nitric oxide. In: IgnarroLJ ed. Nitric Oxide: Biology and Pathobiology. San Diego, CA: Academic Press. 2000; 733 45.
  • 18
    Nathan CF. Inducible nitric oxide synthase: what difference does it make? J Clin Invest 1997; 100:2417 23.
  • 19
    Moncada S & Higgs A. The l-arginine-nitric oxide pathway . N Engl J Med 1993; 329:2002 12.
  • 20
    Stuehr DJ & Griffith OW. Mammalian nitric oxide synthase. Adv Enzymol Relat Areas Mol Biol 1992; 65:287 346.
  • 21
    Yoshida K, Akaike T, Doi T, Sato K, Ijiri S, Suga M, Ando M, Maeda H. Pronounced enhancement of NO-dependent antimicrobial action by an NO-oxidizing agent, imidazolineoxyl N-oxide. Infect Immun 1993; 61:3552 5.
  • 22
    De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 1995; 92:6399 403.
  • 23
    Kuwahara H, Miyamoto Y, Akaike T, Kubota T, Sawa T, Okamoto S, Maeda H. Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect Immun 2000; 68:4378 83.
  • 24
    MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 1997; 94:5243 8.DOI: 10.1073/pnas.94.10.5243
  • 25
    Shiloh MU, MacMicking JD, Nicholson S et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 1999; 10:29 38.
  • 26
    Shiloh MU & Nathan CF. Reactive nitrogen intermediates and the pathogensis of Salmonella and mycobacteria. Curr Opin Microbiol 2000; 3:35 42.DOI: 10.1016/s1369-5274(99)00048-x
  • 27
    Darrah PA, Hondalus MK, Chen Q, Ischiropoulos H, Mosser DM. Cooperation between reactive oxygen and nitrogen intermediates in killing of Rhodococcus equi by activated macrophages. Infect Immun 2000; 68:3587 93.
  • 28
    Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 2000; 192:237 48.
  • 29
    Koprowski H, Zheng YM, Heber-Katz E, Fraser N, Rorke L, Fu ZF, Hanlon C, Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci USA 1993; 90:3024 7.
  • 30
    Zheng YM, Schöfer MKH, Weihe E, Sheng H, Corisdeo S, Fu ZF, Koprowski H, Dietzschold B. Severity of neurological signs and degree of inflammatory lesions in the brains of the rats with Borna disease correlate with the induction of nitric oxide synthase. J Virol 1993; 67:5786 91.
  • 31
    Karupiah G, Xie Q, Buller RML, Nathan C, Duarte C, MacMicking JD. Inhibition of viral replication by interferon-γ-induced nitric oxide synthase. Science 1993; 261:1445 8.
  • 32
    Akaike T, Weihe E, Schaefer M et al. Effect of neurotropic virus infection on neuronal and inducible nitric oxide synthase activity in rat brain. J Neurovirol 1995; 1:118 25.
  • 33
    Mikami S, Kawashima S, Kanazawa K et al. Expression of nitric oxide synthase in a murine model of viral myocarditis induced by coxsackie virus B3. Biochem Biophys Res Commun 1996; 220:983 9.DOI: 10.1006/bbrc.1996.0519
  • 34
    Akaike T, Noguchi Y, Ijiri S, Setoguchi K, Suga M, Zheng YM, Dietzschold B, Maeda H. Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 1996; 93:2448 53.DOI: 10.1073/pnas.93.6.2448
  • 35
    Fujii S, Akaike T, Maeda H. Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats. Virology 1999; 256:203 12.DOI: 10.1006/viro.1999.9610
  • 36
    Bukrinsky MI, Nottet HSLM, Schmidtmayerova H, Dubrovsky L, Flanagan CR, Mullins ME, Lipton SA, Gendelman HE. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HSV-1) -infected monocytes: implications for HIV-associated neurological disease. J Exp Med 1995; 181:735 45.
  • 37
    Majano PL, Garcı´a-Monzón C, López-Cabrera M, Lara-Pezzi E, Fernández-Ruiz E, Garc?a-Iglesias C, Borque MJ, Moreno-Otero R. Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J Clin Invest 1998; 101:1343 52.
  • 38
    Akaike T, Ando M, Oda T, Doi T, Ijiri S, Araki S, Maeda H. Dependence on O2 generation by xanthine oxidase of pathogenesis of influenza virus infection in mice. J Clin Invest 1990; 85:739 45.
  • 39
    Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, Mills KH. Poliovirus-specific CD4+ Th1 clones with both cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in transgenic mice expressing the human poliovirus receptor. J Exp Med 1995; 181:1285 92.
  • 40
    Jonjic S, Mutter W, Weiland F, Reddehase MJ, Koszinowski UH. Site-restricted persistent cytomegalovirus infection after selective long-term deletion of CD4+ T lymphocytes. J Exp Med 1989; 169:1199 212.
  • 41
    Eichelberger M, Allan W, Zijlstra Jaenisch R, Doherty PC. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med 1991; 174:875 80.
  • 42
    Graham MB, Dalton DK, Giltinan D, Braciale VL, Stewart TA, Braciale TJ. Response to influenza infection in mice with a targeted disruption in the interferon γ gene. J Exp Med 1993; 178:1725 32.
  • 43
    Mo XY, Tripp RA, Sangster MY, Doherty PC. The cytotoxic T-lymphocyte response to Sendai virus is unimpaired in the absence of gamma interferon. J Virol 1997; 71:1906 10.
  • 44
    Van Den Broek M, Bachmann MF, Höhler G, Barner M, Escher R, Zinkernagel R, Kopf M. IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-γ and nitric oxide synthetase 2. J Immunol 2000; 164:371 8.
  • 45
    Karupiah G, Chen JH, Mahalingam S, Nathan CF, MacMicking JD. Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 1998; 188:1541 6.
  • 46
    Bartholdy C, Nansen A, Christensen JE, Marker O, Thomsen AR. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology. J Gen Virol 1999; 80:2997 3005.
  • 47
    Wu GF, Pewe L, Perlman S. Coronavirus-induced demyelination occurs in the absence of inducible nitric oxide synthase. J Virol 2000; 74:7683 6.
  • 48
    Akaike T, Fujii S, Kato A et al. Viral mutation accelerated by nitric oxide production during infection in vivo. FASEB J 2000; 14:1447 54.
  • 49
    Cunha FQ, Moncada S, Liew FY. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-γ in murine macrophages. Biochem Biophys Res Commun 1992; 182:1155 9.
  • 50
    Vodovotz Y, Bogdan C, Paik J, Xie Q, Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β. J Exp Med 1993; 178:605 13.
  • 51
    Bogdan C, Vodovotz Y, Paik J, Xie Q, Nathan C. Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. J Leukoc Biol 1994; 55:227 33.
  • 52
    Corraliza IM, Soler G, Eichmann K, Modolell M. Arginase induction by suppression of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone marrow-derived macrophages . Biochem Biophys Res Commun 1995; 206:667 73.DOI: 10.1006/bbrc.1995.1094
  • 53
    Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett 1996; 395:119 22.DOI: 10.1016/0014-5793(96)01015-0
  • 54
    Sonoki T, Nagasaki A, Gotoh T, Takiguchi M, Takeya M, Matsuzaki H, Mori M. Coinduction of nitric oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide. J Biol Chem 1997; 272:3689 93.
  • 55
    Adamson DC, Kopnisky KL, Dawson TM, Dawson VL. Mechanisms and structural determinants of HIV-1 coat protein, gp41-induced neurotoxicity. J Neurosci 1999; 19:64 71.
  • 56
    Hori K, Burd PR, Furuke K, Kutza J, Weih KA, Clouse KA. Human immunodeficiency virus-1-infected macrophages induce inducible nitric oxide synthase and nitric oxide (NO) production on astrocytes: astrocytic NO as a possible mediator of neuronal damage in acquired immunodeficiency syndrome. J Immunol 1999; 93:1843 50.
  • 57
    Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TL, Hedreen JC, Navia BA. Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 1999; 46:207 16.
  • 58
    Barbaro G, Di Lorenzo G, Soldini M, Giancaspro G, Grisorio B, Pellicelli A, Barbarini G. Intensity of myocardial expression of inducible nitric oxide synthase influences the clinical course of human immunodeficiency virus-associated cardiomyopathy. Circulation 1999; 100:933 9.
  • 59
    Tsutsumi H, Takeuchi R, Ohsaki M, Seki K, Chiba S. Respiratory syncytial virus infection of human respiratory epithelial cells enhances inducible nitric oxide synthase gene expression. J Leukoc Biol 1999; 66:99 104.
  • 60
    Croen KD. Evidence for an antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 1993; 91:2446 52.
  • 61
    Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS. Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein–Barr virus reactivation. Cell 1994; 79:1137 46.
  • 62
    Gao X, Tajima M, Sairenji T. Nitric oxide down-regulates Epstein–Barr virus reactivation in epithelial cell lines. Virology 1999; 258:375 81.DOI: 10.1006/viro.1999.9748
  • 63
    Saura M, Zaragoza C, McMillan A, Quick RA, Hohenadl C, Lowenstein JM, Lowenstein CJ. An antiviral mechanism of nitric oxide: inhibition of a viral proteinase. Immunity 1999; 10:21 8.
  • 64
    Stamler J, Singel D, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992; 258:1898 902.
  • 65
    Gaston B, Reilly J, Drazen JM et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways . Proc Natl Acad Sci USA 1993; 90:10957 61.
  • 66
    Lander HM. An essential role of free radicals and derived species in signal transduction. FASEB J 1997; 11:118 24.
  • 67
    Inoue K, Akaike T, Miyamoto Y et al. Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem 1999; 274:27069 75.
  • 68
    Akaike T. Mechanisms of biological S-nitrosation and its measurement . Free Radic Res 2000; in press.:
  • 69
    Ikebe N, Akaike T, Miyamoto Y, Ogawa M, Maeda H. Protective effect of S-nitrosylated α1-protease inhibitor on hepatic ischemia-reperfusion injury. J Pharmacol Exp Ther 2000; :in press.
  • 70
    Ogura T, Tatemichi M, Esumi H. Nitric oxide inhibits CPP. 32-like activity under redox regulation. Biochem Biophys Res Commun 1997; 236:365 9.DOI: 10.1006/bbrc.1997.6948
  • 71
    Mannick JB, Hausladen A, Liu L et al. Fas-induced caspase denitrosylation. Science 1999; 284:651 4.DOI: 10.1126/science.284.5414.651
  • 72
    Guillemard E, Varano B, Belardelli F, Quero AM, Gessani S. Inhibitory activity of constitutive nitric oxide on the expression of alpha/beta interferon genes in murine peritoneal macrophages. J Virol 1999; 73:7328 33.
  • 73
    Kreil TR & Eibl MM. Nitric oxide and viral infection: no antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology 1996; 219:304 6.DOI: 10.1006/viro.1996.0252
  • 74
    Adler H, Beland JL, Del-Pan NC, Kobzik L, Brewer JP, Martin TR, Rimm IJ. Suppression of herpes simplex virus type 1 (HSV-1) -induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 1997; 185:1533 40.
  • 75
    Nishio R, Matsumori A, Shioi T, Ishida H, Sasayama S. Treatment of experimental viral myocarditis with interleukin-10. Circulation 1999; 100:1102 8.
  • 76
    Hirasawa K, Jun HS, Hans HS, Zhang ML, Hollenberg MD, Yoon JW. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signalling pathway and subsequent suppression of nitric oxide production in macrophages. J Virol 1999; 73:8541 8.
  • 77
    Andrews DM, Matthews VB, Sammels LM, Carrello AC, McMinn PC. The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J Virol 1999; 73:8781 90.
  • 78
    Taylor-Robinson AW, Liew FY, Severn A, Xu D, McSorley SJ, Garside P, Padron J, Phillips RS. Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol 1994; 24:980 4.
  • 79
    Wei XQ, Charles IG, Smith A et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995; 375:408 11.
  • 80
    Kolb H & Kolb-Bachofen V. Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 1998; 12:556 61.
  • 81
    MacLean A, Wei XQ, Huang FP, Al-Alem UA, Chan WL, Liew FY. Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses. J Gen Virol 1998; 79:825 30.
  • 82
    Karupiah G, Chen JH, Nathan CF, Mahalingam S, MacMicking JD. Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection. J Virol 1998; 72:7703 6.
  • 83
    Zaragoza C, Ocampo CJ, Saura M et al. Inducible nitric oxide synthase protection against coxsackievirus pancreatitis. J Immunol 1999; 163:5497 504.
  • 84
    Zaragoza C, Ocampo C, Saura M et al. The role of inducible nitric oxide synthase in the host response to Coxsackievirus myocarditis. Proc Natl Acad Sci USA 1998; 95:2469 74.DOI: 10.1073/pnas.95.5.2469
  • 85
    Zinkernagel RM. Immunology taught by viruses. Science 1996; 271:173 8.
  • 86
    Bennink JR & Doherty PC. Different rules govern help for cytotoxic T cells and B cells. Nature 1978; 276:829 31.
  • 87
    Ramsay AJ, Ruby J, Ramshaw IA. A case for cytokines as effector molecules in the resolution of virus infection. Immunol Today 1993; 14:155 7.
  • 88
    Graham MB, Braciale VL, Braciale TJ. Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J Exp Med 1994; 180:1273 82.
  • 89
    Mo XY, Sangster MY, Tripp RA, Doherty PC. Modification of the Sendai virus-specific antibody and CD8+ T-cell responses in mice homozygous for disruption of the interleukin-4 gene. J Virol 1997; 71:2518 21.
  • 90
    Doherty TM & Sher A. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium infection. J Immunol 1997; 158:4822 31.
  • 91
    Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 2000; 192:227 36.
  • 92
    Hortelano S, Alvarez AM, Bosca L. Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages. FASEB J 1999; 13:2311 7.
  • 93
    Okamoto T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H. Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism of procollagenase activation involving nitric oxide. Arch Biochem Biophys 1997; 342:261 74.DOI: 10.1006/abbi.1997.0127
  • 94
    Matsumoto H & Sies H. The reaction of ebselen with peroxynitrite. Chem Res Toxicol 1996; 9:262 7.
  • 95
    Weitzman SA & Stossel TP. Mutation caused by human phagocytes. Science 1981; 212:546 7.
  • 96
    Yermilov V, Rubio J, Ohshima H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. Carcinogenesis 1995; 16:2045 50.
  • 97
    Juedes MJ & Wogan GN. Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res 1996; 349:51 61.DOI: 10.1016/0027-5107(95)00152-2
  • 98
    Zhuang JC, Lin C, Lin D, Wogan GN. Mutagenesis associated with nitric oxide production in macrophages. Proc Natl Acad Sci USA 1998; 95:8286 91.DOI: 10.1073/pnas.95.14.8286
  • 99
    Beck MA, Shi Q, Morris VG, Levander OA. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med 1995; 1:433 6.
  • 100
    Beck MA, Esworthy RS, Ho Y-S, Chu F-F. Glutathione peroxidase protects mice from viral-induced myocarditis. FASEB J 1998; 12:1143 9.