• 1
    Dimitrov DS. Cell biology of virus entry. Cell 2000; 101:697702.
  • 2
    Vazquez-Torres A, Jones-Carson J & Baumler AJ et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 1999; 401:8048.DOI: 10.1038/44593
  • 3
    Gao Z, Shin J-S, Malaviya R, Baorto D & Abraham SN. Opsonin-independent phagocytosis of FimH-expressing bacteria by mouse bone marrow derived mast cells, in preparation.
  • 4
    Malaviya R, Ikeda T, Ross E & Abraham SN. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha [see comments]. Nature 1996; 381:7780.
  • 5
    Echtenacher B, Mannel DN & Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis [see comments]. Nature 1996; 381:757.
  • 6
    Shin JS, Gao Z & Abraham SN. Involvement of cellular caveolae in bacterial entry into mast cells [see comments]. Science 2000; 289:7858.DOI: 10.1126/science.289.5480.785
  • 7
    Fra AM, Williamson E, Simons K & Parton RG. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem 1994; 269:307458.
  • 8
    Anderson RG, Kamen BA, Rothberg KG & Lacey SW. Potocytosis: sequestration and transport of small molecules by caveolae. Science 1992; 255:4101.
  • 9
    Schnitzer JE, Oh P, Pinney E & Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994; 127:121732.
  • 10
    Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998; 67:199225.
  • 11
    Field KA, Holowka D & Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Nat Acad Sci USA 1995; 92:92015.
  • 12
    Fra AM, Williamson E, Simons K & Parton RG. De novo formation of caveolae in lymphocytes by expression of VIP21- caveolin. Proc Natl Acad Sci USA 1995; 92:86559.
  • 13
    Monier S, Parton RG, Vogel F, Behlke J, Henske A & Kurzchalia TV. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 1995; 6:91127.
  • 14
    Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC & Lisanti MP. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA 1995; 92:940711.
  • 15
    Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR & Anderson RG. Caveolin, a protein component of caveolae membrane coats. Cell 1992; 68:67382.
  • 16
    Takashi O, Schlegel A, Scherer PE & Lisanti MP. Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes’ at the plasma membrane. J Biol Chem 1998; 273:541922.
  • 17
    Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta P, Zhang X, Scherer PE & Lisanti MP. Crowded little caves: structure and function of caveolae. Cell Signal 1998; 10:45763.DOI: 10.1016/s0898-6568(98)00007-2
  • 18
    Mineo C, James GL, Smart EJ & Anderson RG. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 1996; 271:119305.
  • 19
    Liu P, Ying Y, Ko YG & Anderson RG. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem 1996; 271:10299–303.
  • 20
    Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG & Ishikawa Y. Caveolin is an activator of insulin receptor signaling. J Biol Chem 1998; 273:269628.
  • 21
    Okamoto T, Schlegel A, Scherer PE & Lisanti MP. Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes’ at the plasma membrane. J Biol Chem 1998; 273:541922.
  • 22
    Schnitzer JE, Liu J & Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 1995; 270:14399–404.
  • 23
    Conrad PA, Smart EJ, Ying YS, Anderson RG & Bloom GS. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J Cell Biol 1995; 131:142133.
  • 24
    Harada S, Smith RM & Jarett L. Mechanisms of nuclear translocation of insulin. Cell Biochem Biophys 1999; 31:30719.
  • 25
    Hansen GH, Niels-Christiansen LL, Immerdal L, Hunziker W, Kenny AJ & Danielsen EM. Transcytosis of immunoglobulin A in the mouse enterocyte occurs through glycolipid raft- and rab17-containing compartments. Gastroenterology 1999; 116:61022.
  • 26
    Middleton J, Neil S & Wintle J et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 1997; 91:38595.
  • 27
    Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA & Dvorak HF. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 1996; 59:10015.
  • 28
    Simionescu N, Siminoescu M & Palade GE. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 1975; 64:586607.
  • 29
    Stapleton A & Stamm WE. Prevention of urinary tract infection. Infect Dis Clin North Am 1997; 11:71933.
  • 30
    Kil KS, Darouiche RO, Hull RA, Mansouri MD & Musher DM. Identification of a Klebsiella pneumoniae strain associated with nosocomial urinary tract infection. J Clin Microbiol 1997; 35:23704.
  • 31
    Abraham S, Sharon N & Ofek I. Adhesion of Bacteria to Mucosal Surfaces. In: OgraPLMJ, LammME, StroberW, BienenstockJ, McGheeJR, eds. Mucosal Immunology. San Diego: Academic Press, 1999:3142.
  • 32
    Baorto DM, Gao Z, Malaviya R, Dustin ML, Van Der Merwe A, Lublin DM & Abraham SN. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 1997; 389:6369.DOI: 10.1038/39376
  • 33
    Malaviya R, Gao Z, Thankavel K, Merwe PA & Abraham SN. The mast cell tumor necrosis factor alpha response to FimH-expressing Excherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Nat Acad Sci USA 1999; 96:81105.
  • 34
    Brown DA & Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 1992; 68:53344.
  • 35
    Mayor S, Rothberg KG & Maxfield FR. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 1994; 264:194851.
  • 36
    Gatfield J & Pieters J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 2000; 288:164750.DOI: 10.1126/science.288.5471.1647
  • 37
    Wooldridge KG, Williams PH & Ketley JM. Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 1996; 21:299305.DOI: 10.1006/mpat.1996.0063
  • 38
    Marsh M & Helenius A. Virus entry into animal cells. Adv Virus Res 1989; 36:10751.
  • 39
    Anderson HA, Chen Y & Norkin LC. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae Mol Biol Cell 1996; 7:182534.
  • 40
    Stang E, Kartenbeck J & Parton RG. Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol Biol Cell 1997; 8:4757.
  • 41
    Norkin LC. Simian virus 40 infection via MHC class I molecules and caveolae. Immunol Rev 1999; 168:1322.
  • 42
    Parton RG. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 1994; 42:15566.
  • 43
    Lencer WI, Hirst TR & Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. Biochim Biophys Acta 1999; 1450:17790.
  • 44
    Lencer WI, Moe S, Rufo PA & Madara JL. Transcytosis of cholera toxin subunits across model human intestinal epithelia. Proc Natl Acad Sci USA 1995; 92:10094–8.
  • 45
    Lencer WI, Constable C & Moe S et al. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol 1995; 131:95162.
  • 46
    Sharp GW & Hynie S. Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 1971; 229:2669.
  • 47
    Dobrowolski JM & Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 1996; 84:9339.
  • 48
    Mordue DG, Hakansson S, Niesman I & Sibley LD. Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp Parasitol 1999; 92:8799.DOI: 10.1006/expr.1999.4412
  • 49
    Mordue DG, Desai N, Dustin M & Sibley LD. Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J Exp Med 1999; 190:178392.
  • 50
    Nguyen DH & Hildreth JE. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 2000; 74:326472.
  • 51
    Lauer S, VanWye J, Harrison T, McManus H, Samuel BU, Hiller NL, Mohandas N & Haldar K. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. Embo J 2000; 19:355664.DOI: 10.1093/emboj/19.14.3556
  • 52
    Henley JR, Krueger EW, Oswald BJ & McNiven MA. Dynamin-mediated internalization of caveolae. J Cell Biol 1998; 141:8599.
  • 53
    Parton RG, Joggerst B & Simons K. Regulated internalization of caveolae. J Cell Biol 1994; 127:1199215.
  • 54
    Schnitzer JE, Oh P & McIntosh DP. Role of GTP hydrolysis in fission of caveolae directly from plasma membranes [published erratum appears in Science 1996; 274:1069]. Science 1996; 274:23942.DOI: 10.1126/science.274.5285.239
  • 55
    Montesano R, Roth J, Robert A & Orci L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanous toxins. Nature 1982; 296:6513.
  • 56
    Werling D, Hope JC, Chaplin P, Collins RA, Taylor G & Howard CJ. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J Leukoc Biol 1999; 66:508.