SEARCH

SEARCH BY CITATION

References

  • 1
    Stinchcombe JC & Griffiths GM. Regulated secretion from hemopoietic cells. J Cell Biol 1999; 147:16.
  • 2
    Griffiths GM. Secretory lysosomes – a special mechanism of regulated secretion in haemopoieitic cells. Trends Cell Biology 1996; 6:32932.
  • 3
    Lin RC & Scheller RH. Structural organization of the synaptic exocytosis core complex. Neuron, 1997; 19:108794.
  • 4
    Podack ER & Kupfer A. T-cell effector functions: mechanisms for delivery of cytotoxicity and help. Annu Rev Cell Biol 1991; 7:479504.
  • 5
    Springer TA, Davignon D, Ho MK, Kurzinger K, Martz E, Sanchez-Madrid F. LFA-1 and Lyt-2,3 molecules associated with T lymphocyte-mediated killing; and Mac-1, an LFA-1 homologue associated with complement receptor function. Immunol Rev 1982; 68:17195.
  • 6
    Krensky AM, Robbins E, Springer TA, Burakoff SJ. LFA-1, LFA-2, and LFA-3 antigens are involved in CTL-target conjugation. J Immunol 1984; 132:21802.
  • 7
    Burn P, Kupfer A, Singer SJ. Dynamic membrane–cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes. Proc Natl Acad Sci USA 1988; 85:497501.
  • 8
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation [see comments]. Science 1999; 285:2217.DOI: 10.1126/science.285.5425.221
  • 9
    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998; 395:826.DOI: 10.1038/25764
  • 10
    Kuhne MR, Ku G, Weiss A. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J Biol Chem 2000; 275:218590.
  • 11
    Kupfer A & Singer SJ. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu Rev Immunol 1989; 7:30937.
  • 12
    Burkhardt JK, McIlvain Jm Jr, Sheetz MP, Argon Y. Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro. J Cell Sci 1993; 104:15162.
  • 13
    Yannelli JR, Sullivan JA, Mandell GL, Engelhard VH. Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography. J Immunol 1986; 136:37782.
  • 14
    Stinchcombe JC, Mules E, Booth S, Barral D, Hume A, Seabra M, Griffiths GM. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J Cell Biol 2001; 152:82533.
  • 15
    Hibi T, Hirashima N, Nakanishi M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem Biophys Res Commun 2000; 271:3641.
  • 16
    Paumet F, Le Mao J, Martin S, Galli T, David B, Blank U, Roa M. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. J Immunol 2000; 164:58507.
  • 17
    Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993; 75:40918.
  • 18
    Schiavo G, Benfenati F, Poulain B, Rossetto O, De Polverino Laureto P, DasGupta BR, Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin [see comments]. Nature 1992; 359:8325.
  • 19
    Arora N, Williamson LC, Leppla SH, Halpern JL. Cytotoxic effects of a chimeric protein consisting of tetanus toxin light chain and anthrax toxin lethal factor in non-neuronal cells. J Biol Chem 1994; 269:2616571.
  • 20
    Lemons PP, Chen D, Bernstein AM, Bennett MK, Whiteheart SW. Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery [see comments]. Blood 1997; 90:1490500.
  • 21
    Chen D, Lemons PP, Schraw T, Whiteheart SW. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood 2000; 96:17828.
  • 22
    Chen D, Bernstein AM, Lemons PP, Whiteheart SW. Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood 2000; 95:9219.
  • 23
    Lemons PP, Chen D, Whiteheart SW. Molecular mechanisms of platelet exocytosis: requirements for alpha-granule release. Biochem Biophys Res Commun 2000; 267:87580.DOI: 10.1006/bbrc.1999.2039
  • 24
    Flaumenhaft R, Croce K, Chen E, Furie B, Furie BC. Proteins of the exocytotic core complex mediate platelet alpha-granule secretion. Roles of vesicle-associated membrane protein, SNAP-23, and syntaxin 4. J Biol Chem 1999; 274:2492501.
  • 25
    Brumell JH, Volchuk A, Sengelov H, Borregaard N, Cieutat AM, Bainton DF, Grinstein S, Klip A. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. J Immunol 1995; 155:57509.
  • 26
    Martin-Martin B, Nabokina SM, Blasi J, Lazo PA, Mollinedo F. Involvement of SNAP-23 and syntaxin 6 in human neutrophil exocytosis [In Process Citation]. Blood 2000; 96:257483.
  • 27
    Schimmoller F, Simon I, Pfeffer SR. Rab GTPases, directors of vesicle docking. J Biol Chem 1998; 273:221614.
  • 28
    Pereira-Leal JB & Seabra MC. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 2000; 301:107787.DOI: 10.1006/jmbi.2000.4010
  • 29
    Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 1998; 279:5805.DOI: 10.1126/science.279.5350.580
  • 30
    Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M. Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci 1994; 107:343748.
  • 31
    Roa M, Paumet F, Le Mao J, David B, Blank U. Involvement of the ras-like GTPase rab3d in RBL-2H3 mast cell exocytosis following stimulation via high affinity IgE receptors (Fc epsilonRI). J Immunol 1997; 159:281523.
  • 32
    Tuvim MJ, Adachi R, Chocano JF et al. Rab3D, a small GTPase, is localized on mast cell secretory granules and translocates to the plasma membrane upon exocytosis. Am J Respir Cell Mol Biol 1999; 20:7989.
  • 33
    Masuda ES, Luo Y, Young C et al. Rab37 is a novel mast cell specific GTPase localized to secretory granules. FEBS Lett 2000; 470:614.
  • 34
    Karniguian A, Zahraoui A, Tavitian A. Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins. Proc Natl Acad Sci USA 1993; 90:764751.
  • 35
    Nagata K & Nozawa Y. [Role of GTP-binding proteins in phospholipid metabolism in human platelets]. Nippon Rinsho 1992; 50:2239.
  • 36
    Shirakawa R, Yoshioka A, Horiuchi H, Nishioka H, Tabuchi A, Kita T. Small GTPase rab4 regulates Ca2+-induced alpha-granule secretion in platelets [In Process Citation]. J Biol Chem 2000; 275:338449.DOI: 10.1074/jbc.m002834200
  • 37
    Chen D, Guo J, Miki T, Tachibana M, Gahl WA. Molecular cloning and characterisation of rab27a and rab27b, novel human rab proteins shared by melanocytes and platelets. Biochem Mol Med 1997; 60:2737.DOI: 10.1006/bmme.1996.2559
  • 38
    Baram D, Adachi R, Medalia O, Tuvim M, Dickey BF, Mekori YA, Sagi-Eisenberg R. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J Exp Med 1999; 189:164958.
  • 39
    Kee Y, Yoo JS, Hazuka CD, Peterson KE, Hsu SC, Scheller RH. Subunit structure of the mammalian exocyst complex. Proc Natl Acad Sci USA 1997; 94:1443843.
  • 40
    McVey Ward D, Griffiths GM, Stinchcombe JC, Kaplan J. Analysis of the lysosomal disease Chediak–Higashi Syndrome. Traffic 2000; 1:81622.DOI: 10.1034/j.1600-0854.2000.011102.x
  • 41
    Baetz K, Isaaz S, Griffiths GM. Loss of cytotoxic T lymphocyte function in Chediak–Higashi syndrome arises from a secretory defect that prevents lytic granule exocytosis. J Immunol 1995; 154:612231.
  • 42
    Orlow SJ. Melanosomes are specialized members of the lysosomal lineage of organelles. J Invest Dermatol 1995; 105:37.
  • 43
    Barbosa MD, Nguyen QA, Tchernev VT et al. Identification of the homologous beige and Chediak–Higashi syndrome genes [published erratum appears in Nature 1997; 385:97]. Nature 1996; 382: 2625.
  • 44
    Nagle DL, Karim MA, Woolf EA et al. Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome [see comments]. Nat Genet 1996; 14:30711.
  • 45
    Mancini AJ, Chan LS, Paller AS. Partial albinism with immunodeficiency: Griscelli syndrome: report of a case and review of the literature. J Am Acad Dermatol 1998; 38:295300.
  • 46
    Pastural E, Ersoy F, Yalman N et al. Two genes are responsible for Griscelli syndrome at the same 15q21 locus. Genomics 2000; 63:299306.DOI: 10.1006/geno.1999.6081
  • 47
    Menasche G, Pastural E, Feldmann J et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000; 25:1736.DOI: 10.1038/76024
  • 48
    Wilson SM, Yip R, Swing DA et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc Natl Acad Sci USA 2000; 97:79338.
  • 49
    Haddad EK, Wu X, Hammer JA, Henkart PA. Defective granule exocytosis in Rab27a-deficient lymphocytes. J Cell Biol 2001; 152:83541.
  • 50
    Wu X, Bowers B, Wei Q, Kocher B, Hammer JA, 3rd Myosin V associates with melanosomes in mouse melanocytes: evidence that myosin V is an organelle motor. J Cell Sci 1997; 110:84759.
  • 51
    Wu X, Jung G, Hammer JA, 3rd Functions of unconventional myosins. Curr Opin Cell Biol 2000; 12:4251.DOI: 10.1016/s0955-0674(99)00055-1
  • 52
    Hume AN, Collinson L, Rapak A, Gomes AQ, Hopkins CR, Seabra MC. Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J Cell Biol 2001; 152:795808.
  • 53
    Huizing M, Anikster Y, Gahl WA. Hermansky–Pudlak Syndrome and related disorders of organelle formation. Traffic 2000; 1:82335.DOI: 10.1034/j.1600-0854.2000.011103.x
  • 54
    Oh J, Bailin T, Fukai K et al. Positional cloning of a gene for Hermansky–Pudlak syndrome, a disorder of cytoplasmic organelles [see comments]. Nat Genet 1996; 14:3006.
  • 55
    Swank RT, Novak EK, McGarry MP, Rusiniak ME, Feng L. Mouse models of Hermansky Pudlak syndrome: a review. Pigment Cell Res 1998; 11:6080.
  • 56
    Detter JC, Zhang Q, Mules EH et al. Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc Natl Acad Sci USA 2000; 97:41449.
  • 57
    Bialek-Wyrzykowska U, Bauer BE, Wagner W, Kohlwein SD, Schweyen RJ, Ragnini A. Low levels of Ypt protein prenylation cause vesicle polarization defects and thermosensitive growth that can be suppressed by genes involved in cell wall maintenance. Mol Microbiol 2000; 35:1295311.DOI: 10.1046/j.1365-2958.2000.01782.x