SEARCH

SEARCH BY CITATION

References

  • 1
    Stockinger B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv Immunol 1999; 71:22965.
  • 2
    Klein L, Kyewski B. ‘Promiscuous’ expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity? J Mol Med 2000; 78:48394.
  • 3
    Shevach EM. Regulatory T cells in autoimmunity. Annu Rev Immunol 2000; 18:42349.
  • 4
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155:115164.
  • 5
    Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12:43140.
  • 6
    Powrie F, Mauze S, Coffman RL. CD4+ T cells in the regulation of inflammatory responses in the intestine. Res Immunol 1997; 148:57681.
  • 7
    Lepault F, Gagnerault MC. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J Immunol 2000; 164:2407.
  • 8
    Seddon B, Mason D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor beta and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+ CD45RC cells and CD4+ CD8 thymocytes. J Exp Med 1999; 189:27988.
  • 9
    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+ CD4+ regulatory cells that control intestinal inflammation. J Exp Med 2000; 192:295302.
  • 10
    Thornton AM, Shevach EM. Suppressor effector function of CD4+ CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol 2000; 164:18390.
  • 11
    Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188:28796.
  • 12
    Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160:12128.
  • 13
    Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S. Thymus and autoimmunity: production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999; 162:531726.
  • 14
    Stephens LA, Mason D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J Immunol 2000; 165:310510.
  • 15
    Herbelin A, Gombert JM, Lepault F, Bach JF, Chatenoud L. Mature mainstream TCR alpha beta+ CD4+ thymocytes expressing L-selectin mediate ‘active tolerance’ in the nonobese diabetic mouse. J Immunol 1998; 161:26208.
  • 16
    Zola H, Fusco M, Macardle PJ, Flego L, Roberton D. Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatr Res 1995; 38:397403.
  • 17
    Kanegane H, Miyawaki T, Kato K, Yokoi T, Uehara T, Yachie A, Taniguchi N. A novel subpopulation of CD45RA+ CD4+ T cells expressing IL-2 receptor alpha-chain (CD25) and having a functionally transitional nature into memory cells. Int Immunol 1991; 3:134956.
  • 18
    Taga K, Kasahara Y, Yachie A, Miyawaki T, Taniguchi N. Preferential expression of IL-2 receptor subunits on memory populations within CD4+ and CD8+ T cells. Immunology 1991; 72:159.
  • 19
    Ridings J, Weedon H, Ioannou C, Flego L, Macardle PJ, Zola H. Purification of cord blood lymphocytes. J Immunol Methods 1996; 195:438.
  • 20
    Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4+ CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193:128594.
  • 21
    Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN. Human anergic/suppressive CD4+ CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001; 31:112231.
  • 22
    Stephens LA, Mottet C, Mason D, Powrie F. Human CD4+ CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 2001; 31:124754.DOI: 10.1002/1521-4141(200104)31:4<1247::aid-immu1247>3.0.co;2-m
  • 23
    Levings MK, Sangregorio R, Roncarolo MG. Human CD25+ CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193:1295302.
  • 24
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+ CD25+ T cells with regulatory properties from human blood. J Exp Med 2001; 193:130310.
  • 25
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+ CD25high regulatory cells in human peripheral blood. J Immunol 2001; 167:124553.
  • 26
    Waldmann TA. The interleukin-2 receptor. J Biol Chem 1991; 266:26814.
  • 27
    Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192:30310.
  • 28
    Alegre ML, Noel PJ, Eisfelder BJ, Chuang E, Clark MR, Reiner SL, Thompson CB. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J Immunol 1996; 157:476270.
  • 29
    Metzler B, Burkhart C, Wraith DC. Phenotypic analysis of CTLA-4 and CD28 expression during transient peptide-induced T cell activation in vivo. Int Immunol 1999; 11:66775.
  • 30
    Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192:121322.
  • 31
    Verwilghen J, Lovis R, De Boer M, Linsley PS, Haines GK, Koch AE, Pope RM. Expression of functional B7 and CTLA4 on rheumatoid synovial T cells. J Immunol 1994; 153:137885.
  • 32
    Vanhecke D, Leclercq G, Plum J, Vandekerckhove B. Characterization of distinct stages during the differentiation of human CD69+ CD3+ thymocytes and identification of thymic emigrants. J Immunol 1995; 155:186272.
  • 33
    Surh CD, Sprent J, Webb SR. Exclusion of circulating T cells from the thymus does not apply in the neonatal period. J Exp Med 1993; 177:37985.
  • 34
    Agus DB, Surh CD, Sprent J. Re-entry of T cells to the adult thymus is restricted to activated T cells. J Exp Med 1991; 173:103946.
  • 35
    Westermann J, Smith T, Peters U, Tschernig T, Pabst R, Steinhoff G, Sparshott SM, Bell EB. Both activated and nonactivated leukocytes from the periphery continuously enter the thymic medulla of adult rats: phenotypes, sources and magnitude of traffic. Eur J Immunol 1996; 26:186674.
  • 36
    Bofill M, Akbar AN, Salmon M, Robinson M, Burford G, Janossy G. Immature CD45RAlow ROlow T cells in the human cord blood. I. Antecedents of CD45RA+ unprimed T cells. J Immunol 1994; 152:561323.
  • 37
    Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2:3016.DOI: 10.1038/86302
  • 38
    Salmon M, Pilling D, Borthwick NJ, Viner N, Janossy G, Bacon PA, Akbar AN. The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis. Eur J Immunol 1994; 24:8929.
  • 39
    Hassan J, Reen DJ. IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur J Immunol 1998; 28:305765.
  • 40
    Imanishi K, Seo K, Kato H, Miyoshi-Akiyama T, Zhang RH, Takanashi Y, Imai Y, Uchiyama T. Post-thymic maturation of migrating human thymic single-positive T cells: thymic CD1a CD4+ T cells are more susceptible to anergy induction by toxic shock syndrome toxin-1 than cord blood CD4+ T cells. J Immunol 1998; 160:1129.
  • 41
    Malavasi F, Funaro A, Alessio M et al. CD38: a multi-lineage cell activation molecule with a split personality. Int J Clin Lab Res 1992; 22:7380.
  • 42
    Dianzani U, Funaro A, DiFranco D et al. Interaction between endothelium and CD4+ CD45RA+ lymphocytes. Role of the human CD38 molecule. J Immunol 1994; 153:9529.